全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 


DOI: 10.3866/PKU.WHXB201704194

Full-Text   Cite this paper   Add to My Lib

Abstract:

水合物在沉积物中生成和分解的定量和表征对于含水合物沉积物的物理性质的研究有重要意义。基于核磁共振(NMR)技术研究了水合物在砂中的形成和分解行为,以一种简便的方式计量了孔隙空间中各组分的含量,包括气体、液态水和水合物,并确定了水合数。在水合物形成和分解过程中试样的弛豫行为并没有发生突变,此外,对于含或不含水合物的试样,平均对数T22时间都与含水量成比例关系,直接的解释是液态水始终保持与颗粒表面的接触,弛豫主要发生在颗粒表面,表明水合物以孔隙填充或胶结的形式而不是颗粒涂层的方式存在。
Quantification and characterization of hydrate formation and dissociation in sediments are highly important in the study of the physical properties of hydrate-bearing sediments. In this paper, the behavior of CO2 hydrate formation and dissociation in sand is studied using the nuclear magnetic resonance (NMR) technique. The components of the pore space, including gas, liquid water, and hydrate, were quantified using a convenient method by which the hydration number was determined. No abrupt change in the relaxation behavior of the sample was found during hydrate formation and dissociation. In addition, the value of mean-log T22 appeared to be proportional to the liquid water content of the sample with or without the pore hydrate. A straightforward explanation is that the liquid water in the pore space remains in contact with grain surfaces, and relaxation occurs mainly at the grain surface. The results suggest that, rather than coating the grains, the hydrate is pore-filling or cementing

References

[1]  7 Helgerud M. B. ; Dvorkin J. ; Nur A. ; Sakai A. ; Collett T. S. Geophys. Res. Lett. 1999, 26, 2021. doi: 10.1029/1999GL900421
[2]  8 Priest J. A. ; Rees E. V. L. ; Clayton C. R. I. J. Geophys. Res. 2009, 114, B11205. doi: 10.1029/2009JB006284
[3]  耿春宇.; 丁丽颖.; 韩清珍.; 温浩.. 物理化学学报, 2008, 24, 595. doi: 10.3866/PKU.WHXB20080409
[4]  9 Ersland G. ; J. Husebo A. ; Graue B. A. ; Howard B. J. ; Stevens J. Chem. Eng. J. 2010, 158, 25. doi: 10.1016/j.cej.2008.12.028
[5]  10 Kneafsey T. J. ; Tomutsa L. ; Moridis G. J. ; Seol Y. ; Freifeld B. M. ; Taylor C. E. ; Gupta A. J. Petrol. Sci. Eng. 2007, 56, 108. doi: 10.1016/j.petrol.2006.02.002
[6]  11 Zhao J. ; Yang L. ; Xue K. ; Lam W. ; Li Y. ; Song Y. Chem. Phys. Lett. 2014, 612, 124. doi: 10.1016/j.cplett.2014.07.066
[7]  13 Kerkar P. B. ; Horvat K. ; Jones K. W. ; Mahajan D. Geochem. Geophys. Geosy. 2014, 15, 4759. doi: 10.1002/2014GC005373
[8]  14 Chaouachi M. ; Falenty A. ; Sell K. ; Enzmann F. ; Kersten M. ; Haberthür D. ; Kuhs W. F. Geochem. Geophys. Geosy. 2015, 16, 1711. doi: 10.1002/2015GC005811
[9]  20 Sun R. ; Duan Z. Geochim. Cosmochim. Ac. 2005, 69 (18), 4411. doi: 10.1016/j.gca.2005.05.012
[10]  21 Yan R.T. ; Wei H. Z. ; Wu E. L. ; Wang S. Y. ; Wei C. F. Acta Phys. -Chim. Sin. 2011, 27, 295. doi: 10.3866/PKU.WHXB20110204
[11]  颜荣涛.; 魏厚振.; 吴二林.; 王淑云.; 韦昌富.. 物理化学学报, 2011, 27, 295. doi: 10.3866/PKU.WHXB20110204
[12]  22 Geng C. Y. ; Ding L. Y. ; Han Q. Z. ; Wen H. Acta Phys. -Chim. Sin. 2008, 24, 595. doi: 10.3866/PKU.WHXB20080409
[13]  23 Guo G. ; Rodger P. M. J. Phys. Chem. B 2013, 117, 6498. doi: 10.1021/jp3117215
[14]  1 Sloan E.D. Koh C. A. Clathrate Hydrates of Natural Gases 3rd ed. CRC Press: New York, 2008.
[15]  5 Sultan N. ; Cochonat P. ; Foucher J. P. ; Mienert J. Mar. Geol. 2004, 213, 379. doi: 10.1016/j.margeo.2004.10.015
[16]  12 Rees E. V.L. ; Priest J. A. ; Clayton C. R. I. Mar. Petrol. Geol. 2011, 28, 1283. doi: 10.1016/j.marpetgeo.2011.03.015
[17]  24 Gao S. ; Chapman W. G. ; House W. J. Magn. Reson. 2009, 197, 208. doi: 10.1016/j.jmr.2008.12.022
[18]  2 Makogon Y. F. ; Holditch S. A. ; Makogon T. Y. J. Pet. Sci. Eng. 2007, 56, 14. doi: 10.1016/j.petrol.2005.10.009
[19]  3 Kvenvolden K. A. Rev. Geophys 1993, 31, 173. doi: 10.1029/93RG00268
[20]  4 Mienert, J. ; Posewang, J. ; Baumann, M. Gas hydrates along thenortheastern Atlantic margin: possible hydrate-bound marginsinstabilities and possible release of methane. In Gas Hydrates: Relevance to World Margin Stability and Clima Change; Henriet, J. P. , Mienert, J. Eds. ; Geological Society: London, 1998; Vol. 134, pp275-291 (Special Publication). doi: 10.1144/GSL.SP.1998.137.01.22
[21]  6 Waite W. F. ; Santamarina J. C. ; Cortes D. D. ; Dugan B. ; Espinoza D. N. ; Germaine J. ; Jang J. ; Jung J. W. ; Kneafsey T. J. ; Shine H. ; Soga K. ; Winters W. J. ; Yun T. S. Rev. Geophys. 2009, 47, RG4003. doi: 10.1029/2008RG000279
[22]  15 Bagherzadeh S. A. ; Moudrakovski I. L. ; Ripmeester J. A. ; Englezos P. Energ. Fuel. 2015, 25, 3083. doi: 10.1021/ef200399a
[23]  16 Kleinberg R. L. ; Flaum C. ; Griffin D. D. ; Brewer P. G. ; Malby G. E. ; Peltzer E. T. ; Yesinowski J. P. J. Geophys. Res. 2003, 108, 2508. doi: 10.1029/2003JB002389
[24]  17 Kleinberg, R. L. Nuclear Magnetic Resonance, In Experimental Methods in the Physical Sciences; Wong, P. Z. Eds. ; AcademicPress: San Diego, USA, 1999; pp 337-385. doi: 10.1016/S0076-695X(08)60420-2
[25]  18 Costabel S. ; Yaramanci U. Near Surf. Geophys. 2011, 9 (2), 155. doi: 10.3997/1873-0604.2010055
[26]  19 Diamond L. W. ; Akinfiev N. N. Fluid Phase Equilibr. 2003, 208, 265. doi: 10.1016/S0378-3812(03)00041-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133