全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 


DOI: 10.3866/PKU.WHXB201506011

Full-Text   Cite this paper   Add to My Lib

Abstract:

石墨烯是一种具有广泛应用前景的纳米材料,特别是由石墨烯片层自组装形成的二维纳米通道能够应用于物质的过滤分离.本文采用分子动力学模拟方法研究了原态石墨烯/羟基改性石墨烯狭缝孔道中水分子的微观行为,模拟计算了水的界面结构性质和扩散动力学性质,所研究的石墨烯孔宽为0.6-1.5 nm.模拟结果表明,在石墨烯狭缝孔道中,水分子受限结构呈现层状分布,在超微石墨烯孔道(0.6-0.8 nm)中水分子可形成特殊的环状有序结构,石墨烯表面可诱导产生特殊的水分子界面取向.在石墨烯孔道中,水分子的扩散运动低于主体相水分子的扩散运动,羟基化石墨烯孔道可以促使水分子的扩散能力降低.对于改性石墨烯狭缝孔道,由于羟基的作用,水分子可以自发渗入0.6 nm的石墨烯孔道内.模拟所得到的受限水分子的动力学性质与水分子在石墨烯孔道内的有序结构有关.本文研究结果将有助于分析理解水分子通过石墨烯纳米通道的渗透机理,为设计基于石墨烯的纳米膜提供理论指导.
Graphene has potential applications in many fields. In particular, two-dimensional graphene nanochannels assembled from graphene sheets can be used for filtration and separation. In this work, molecular dynamics simulations were performed to investigate the microscopic structural and dynamical properties of water molecules confined in pristine and hydroxyl-modified graphene slit pores with widths of 0.6-1.5 nm. The simulation results indicate that water molecules have layered structure distributions within the graphene nanoscale channels. The special ordered ring structure can be formed for water confined in the subnanometer pores (0.6-0.8 nm). Graphene surfaces are able to induce distinctive molecular interfacial orientations of water molecules. In the graphene slits, the diffusion of water molecules was slower than that in bulk water, and the hydroxyl-modified graphene pores could lead to more reduced water diffusion ability. For the hydroxyl-modified graphene pores, water molecules spontaneously permeated into the 0.6 nm slit pore. According to the simulation results, the dynamic behavior of confined water is associated with the ordered water structures confined within the graphene-based nanochannels. These simulation results will be helpful in understanding the penetration mechanism of water molecules through graphene nanochannels, and will provide a guide for designing graphene-based membrane structures

References

[1]  56 Luzar A. ; Chandler D. Nature 1996, 379 (6560), 55. doi: 10.1021/jp044247k
[2]  13 Koga K. ; Gao G. T. ; Tanaka H. ; Zeng X. C. Nature 2001, 412 (6849), 802. doi: 10.1038/35090532
[3]  16 Zhang H. ; Lv X. J. ; Li Y. M. ; Wang Y. ; Li J. H. ACS Nano 2010, 4 (1), 380. doi: 10.1021/nn901221k
[4]  51 Deshmukh S. A. ; Kamath G. ; Baker G. A. ; Sumant A. V. ; Sankaranarayanan S. K. R. S. Surf. Sci 2013, 609, 129. doi: 10.1016/j.susc.2012.11.017
[5]  53 Pertsin A. ; Grunze M. J. Phys. Chem. B 2004, 108 (4), 1357. doi: 10.1021/jp0356968
[6]  54 Hub J. S. ; Winkler F. K. ; Merrick M. ; de Groot B. L. D. J. Am. Chem. Soc 2010, 132 (38), 13251. doi: 10.1021/jp0356968
[7]  7 Strauss I. ; Chan H. ; Král P. J. Am. Chem. Soc 2014, 136 (4), 1170. doi: 10.1021/ja4087962
[8]  8 Cicero, G.; Grossman, J. C.; Schwegler, E.; Gygi, F.; Galli, G. J. Am. Chem. Soc. 2008, 130 (6), 1871. doi: 10.1021/ja074418+
[9]  14 Stoller M. D. ; Park S. ; Zhu Y. W. ; An J. H. ; Ruoff R. S. Nano Lett 2008, 8 (10), 3498. doi: 10.1021/nl802558y
[10]  15 Chandra V. ; Park J. ; Chun Y. ; Lee J. W. ; Hwang I. C. ; Kim K. S. ACS Nano 2010, 4 (7), 3979. doi: 10.1021/nn1008897
[11]  17 Cohen-Tanugi D. ; Grossman J. C. Nano Lett 2012, 12 (7), 3602. doi: 10.1021/nl3012853
[12]  18 Hu, Y. J.; Jin, J.; Zhang, H.; Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26 (8), 2073.
[13]  19 Chen H. Q. ; Müeller M. B. ; Gilmore K. J. ; Wallace G. G. ; Li D. Adv. Mater 2008, 20 (18), 3557. doi: 10.1002/adma.200800757
[14]  20 Li D. ; Mueller M. B. ; Gilje S. ; Kaner R. B. ; Wallace G. G. Nat. Nanotechnol 2008, 3 (2), 101. doi: 10.1038/nnano.2007.451
[15]  21 Han Y. ; Xu Z. ; Gao C. Adv. Funct. Mater 2013, 23 (29), 3693. doi: 10.1002/adfm.v23.29
[16]  23 Joshi R. K. ; Carbone P. ; Wang F. C. ; Kravets V. G. ; Su Y. ; Grigorieva I. V. ; Wu H. A. ; Geim A. K. ; Nair R. R. Science 2014, 343 (6172), 752. doi: 10.1126/science.1245711
[17]  25 Sun P. Z. ; Zhu M. ; Wang K. L. ; Zhong M. L. ; Wei J. Q. ; Wu D. H. ; Xu Z. P. ; Zhu H. W. ACS Nano 2013, 7 (1), 428. doi: 10.1021/nn304471w
[18]  31 Gao W. X. ; Wang H. L. ; Li S. M. Acta Phys. -Chim. Sin 2014, 30 (9), 1625. doi: 10.3866/PKU.WHXB201407031
[19]  高文秀; 王洪磊; 李慎敏. 物理化学学报, 2014, 30 (9), 1625. doi: 10.3866/PKU.WHXB201407031
[20]  35 Kumar P. ; Buldyrev S. V. ; Starr F. W. ; Giovambattista N. ; Stanley H. E. Phys. Rev. E 2005, 72 (5), 051503. doi: 10.1103/PhysRevE.72.051503
[21]  39 Liu L. ; Zhang L. ; Sun Z. G. ; Xi G. Nanoscale 2012, 4 (20), 6279. doi: 10.1039/c2nr31847d
[22]  40 Mark P. ; Nilsson L. J. Phys. Chem. A 2001, 105 (43), 9954. doi: 10.1021/jp003020w
[23]  41 Cheng A. ; Steele W. A. J. Chem. Phys 1990, 92 (6), 3858. doi: 10.1063/1.458562
[24]  43 Jane?ek J. ; Netz R. R. Langmuir 2007, 23 (16), 8417. doi: 10.1021/la700561q
[25]  47 Eun C. S. ; Berkowitz M. L. J. Phys. Chem. B 2010, 114 (42), 13410. doi: 10.1021/jp1072654
[26]  48 Lum, K.; Chandler, D.; Weeks, J. D. J. Phys. Chem. B 1999, 103 (22), 4570. doi: 10.1021/jp984327m
[27]  50 Boukhvalov D. W. ; Katsnelson M. I. ; Son Y. W. Nano Lett 2013, 13 (8), 3930. doi: 10.1021/nl4020292
[28]  52 Wei N. ; Peng X. S. ; Xu Z. P. ACS Appl. Mater. Inter 2014, 6 (8), 5877. doi: 10.1021/am500777b
[29]  55 Zang J. ; Konduri S. ; Nair S. ; Sholl D. S. ACS Nano 2009, 3 (6), 1548. doi: 10.1021/nn9001837
[30]  57 Striolo A. Nano Lett 2006, 6 (4), 633. doi: 10.1038/379055a0
[31]  58 Martí J. ; Sala J. ; Guàrdia E. J. Mol. Liq 2010, 153 (1), 72. doi: 10.1016/j.molliq.2009.09.015
[32]  59 Jorgensen W. L. ; Chandrasekhar J. ; Madura J. D. ; Impey R. W. ; Klein M. L. J. Chem. Phys 1983, 79 (2), 926. doi: 10.1063/1.445869
[33]  1 Pan Y. S. ; Birkedal H. ; Pattison P. ; Brown D. ; Chapuis G. J. Phys. Chem. B 2004, 108 (20), 6458. doi: 10.1021/jp037219v
[34]  2 Newsome D. A. ; Sholl D. S. J. Phys. Chem. B 2005, 109 (15), 7239. doi: 10.1021/jp044247k
[35]  3 Milischuk A. A. ; Ladanyi B. M. J. Chem. Phys 2011, 135 (17), 174709. doi: 10.1063/1.3657408
[36]  4 Qiao, Y.; Xu, X.; Li, H. Appl. Phys. Lett. 2013, 103 (23), 233106. doi: 10.1063/1.4839255
[37]  5 Han S. ; Choi M. Y. ; Kumar P. ; Stanley H. E. Nat. Phys 2010, 6 (9), 685. doi: 10.1038/nphys1708
[38]  6 Du F. ; Qu L. T. ; Xia Z. H. ; Feng L. F. ; Dai L. M. Langmuir 2011, 27 (13), 8437. doi: 10.1021/la200995r
[39]  9 Thomas J. A. ; McGaughey A. J. H. Nano Lett 2008, 8 (9), 2788. doi: 10.1021/nl8013617
[40]  10 Mashl R. J. ; Joseph S. ; Aluru N. R. ; Jakobsson E. Nano Lett 2003, 3 (5), 589. doi: 10.1021/nl0340226
[41]  11 Liu Y. C. ; Wang Q. ; Lü L. H. ; Zhang L. Z. Acta Phys. -Chim. Sin 2005, 21 (1), 63. doi: 10.3866/PKU.WHXB20050113
[42]  刘迎春; 王琦; 吕玲红; 章连众. 物理化学学报, 2005, 21 (1), 63. doi: 10.3866/PKU.WHXB20050113
[43]  12 Iiyama T. ; Nishikawa K. ; Otowa T. ; Kaneko K. J. Phys. Chem 1995, 99 (25), 10075. doi: 10.1021/j100025a004
[44]  胡耀娟,金娟,张卉,吴萍,蔡称心.物理化学学报, 2010, 26 (8), 2073. doi: 10.3866/PKU.WHXB20100812
[45]  22 Mi B. X. Science 2014, 343 (6172), 740. doi: 10.1126/science.1250247
[46]  24 Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Science 2012, 335 (6067), 442. doi: 10.1126/science.1211694
[47]  26 Sun P. Z. ; Zheng F. ; Zhu M. ; Song Z. G. ; Wang K. L. ; Zhong M. L. ; Wu D. H. ; Little R. B. ; Xu Z. P. ; Zhu H. W. ACS Nano 2014, 8 (1), 850. doi: 10.1021/nn4055682
[48]  27 Hu M. ; Mi B. X. Environ. Sci. Technol 2013, 47 (8), 3715. doi: 10.1021/es400571g
[49]  28 Xu L. ; Hu Y. Z. ; Ma T. B. ; Wang H. Nanotechnology 2013, 24 (50), 505504. doi: 10.1088/0957-4484/24/50/505504
[50]  29 Kolesnikov A. I. ; Zanotti J. M. ; Loong C. K. ; Thiyagarajan P. ; Moravsky A. P. ; Loutfy R. O. ; Burnham C. J. Phys. Rev. Lett 2004, 93 (3), 035503. doi: 10.1103/PhysRevLett.93.035503
[51]  30 Fernández-Serra M. V. ; Artacho E. Phys. Rev. Lett 2006, 96 (1), 016404. doi: 10.1103/PhysRevLett.96.016404
[52]  32 Xiong, W.; Liu, J. Z.; Ma, M.; Xu, Z. P.; Sheridan, J.; Zheng, Q. S. Phys. Rev. E 2011, 84 (5), 056329. doi: 10.1103/PhysRevE.84.056329
[53]  33 Falk K. ; Sedlmeier F. ; Joly L. ; Netz R. R. ; Bocquet L. Nano Lett 2010, 10 (10), 4067. doi: 10.1021/nl1021046
[54]  34 Mosaddeghi H. ; Alavi S. ; Kowsari M. H. ; Najafi B. J. Chem. Phys 2012, 137 (18), 184703. doi: 10.1063/1.4763984
[55]  36 Hirunsit P. ; Balbuena P. B. J. Phys. Chem. C 2007, 111 (4), 1709. doi: 10.1021/jp063718v
[56]  37 Warner J. H. ; Mukai M. ; Kirkland A. I. ACS Nano 2012, 6 (6), 5680. doi: 10.1021/nn3017926
[57]  38 Argyris D. ; Tummala N. R. ; Striolo A. ; Cole D. R. J. Phys. Chem. C 2008, 112 (35), 13587. doi: 10.1021/jp803234a
[58]  42 Wei N. ; Lv C. J. ; Xu Z. P. Langmuir 2014, 30 (12), 3572. doi: 10.1021/la500513x
[59]  44 Cornell W. D. ; Cieplak P. ; Bayly C. I. ; Gould I. R. ; Merz K. M. ; Ferguson D. M. ; Spellmeyer D. C. ; Fox T. ; Caldwell J. W. ; Kollman P. A. J. Am. Chem. Soc 1995, 117 (19), 5179. doi: 10.1021/ja00124a002
[60]  45 Gotzias A. ; Tylianakis E. ; Froudakis G. ; Steriotis T. Microporous Mesoporous Mat 2012, 154, 38. doi: 10.1016/j.micromeso.2011.10.011
[61]  46 Zhu, Y. D.; Guo, X. J.; Shao, Q.; Wei, M. J.; Wu, X. M.; Lu, L. H.; Lu, X. H. Fluid Phase Equilibr. 2010, 297 (2), 215. doi: 10.1016/j.fluid.2010.05.005
[62]  49 Ren X. P. ; Zhou B. ; Wang C. L. J. Chem. Phys 2012, 137 (2), 024703. doi: 10.1063/1.4733719

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133