以柠檬酸为螯合剂和还原剂, NH4VO3为钒源,通过溶胶-凝胶法制备了锂离子电池正极材料Li3V2(PO4)3及其三元掺杂体系Li2.85Na0.15V1.9Al0.1(PO4)2.9F0.1.分别采用X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、能量损失谱(EELS)、拉曼(Raman)光谱、扫描电子显微镜(SEM)、X射线能谱(EDS)、恒流充放电、循环伏安(CV)和交流阻抗谱(EIS)等技术对材料的微观结构、颗粒形貌和电化学性能进行分析.结果表明:在残余碳包覆的基础上, Na、Al、F三元掺杂有利于稳定Li3V2(PO4)3的晶体结构,进一步减少颗粒团聚和提升材料导电特性,促进第三个锂离子的脱出和嵌入,从而显著改善Li3V2(PO4)3的实用电化学性能.未经掺杂的Li3V2(PO4)3原粉在1/9C、1C和6C倍率下的可逆比容量分别为141、119和98 mAh·g-1,而三元掺杂改性材料在1/9C、1C、8C和14C倍率下的比容量分别为172、139、119和115 mAh·g-1.在1C倍率下循环300圈后,掺杂体系的比容量依然高达118 mAh·g-1,比原粉高出32.6%.值得注意的是,这种三元掺杂还使Li3V2(PO4)3的多平台放电曲线近似转变为一条斜线,显示出可能不同的储锂机制. Li3V2(PO4)3 and its triple-cation-doped counterpart Li2.85Na0.15V1.9Al0.1(PO4)2.9F0.1 were prepared by a conventional sol-gel method. The effect of Na-Al-F co-doping on the physicochemical properties, especially the electrochemical performance of Li3V2(PO4)3, were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), Raman spectroscopy, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). It was found that combined with surface coating from residual carbon, this triple-cation co-doping stabilizes the crystalline structure of Li3V2(PO4)3, suppresses secondary particle agglomeration, and improves the electric conductivity. Moreover, reversible deinsertion/insertion of the third lithium ion at deeper charge/discharge is enabled by such doping. As a consequence, the practical electrochemical performance of Li3V2(PO4)3 is significantly improved. The specific capacity of the doped material at a low rate of 1/9C is 172 mAh·g-1 and it maintains 115 mAh·g-1 at a rate of 14C, while the specific capacities of the undoped sample at 1/9C and 6C are only 141 and 98 mAh·g-1, respectively. After 300 cycles at 1C rate, the doped material has a capacity of 118 mAh·g-1, which is 32.6% higher than that of the undoped counterpart. It is also noteworthy that the multiplateau discharge curve of Li3V2(PO4)3 transforms to a slope-like curve, indicating the possibility of a different lithium intercalation mechanism after this co-doping
References
[1]
4 Goodenough, J. B.; Kim, Y. Chemistry of Materials 2010, 22, 587. doi: 10.1021/cm901452z
[2]
6 Liu Y. H. ; Xu Y. L. ; Sun X. F. New Chemical Materials 2014, 42, 1.
[3]
11 Fei L. ; Lu W. ; Sun L. ; Wang J. ; Wei J. ; Chan H. L. W. ; Wang Y. RSC Advances 2013, 3, 1297. doi: 10.1021/jp044247k
[4]
12 Hautier G. ; Jain A. ; Ong S. P. ; Kang B. ; Moore C. ; Doe R. ; Ceder G. Chemistry of Materials 2011, 23, 3495. doi: 10.1021/cm200949v
[5]
29 Yang S. T. ; Zhao N. H. ; Dong H. Y. ; Yang J. X. ; Hue H. Y. Electrochimica Acta 2005, 51, 166. doi: 10.1016/j.electacta.2005.04.013
28 Kuang Q. ; Zhao Y. Journal of Power Sources 2012, 216, 33. doi: 10.1016/j.jpowsour.2012.04.078
[23]
31 Sun X. ; Xu Y. ; Ding P. ; Chen G. ; Zheng X. Mater. Lett. 2013, 113, 186. doi: 10.1016/j.matlet.2013.09.077
[24]
32 Sun, X.; Xu, Y.; Wang, J. J. Solid State Electrochem. 2012, 16, 1781. doi: 10.1007/s10008-011-1619-x
[25]
33 Sato M. ; Ohkawa H. ; Yoshida K. ; Saito M. ; Uematsu K. ; Toda K. Solid State Ion. 2000, 135, 137. doi: 10.1016/S0167-2738(00)00292-7
[26]
34 Sun X. ; Xu Y. ; Ding P. ; Chen G. ; Zheng X. ; Zhang R. ; Li L. Journal of Power Sources 2014, 255, 163. doi: 10.1016/j.jpowsour.2013.12.106
[27]
1 Armand M. ; Tarascon J. M. Nature 2008, 451, 652. doi: 10.1038/451652a
[28]
2 Liu C. ; Li F. ; Ma L. P. ; Cheng H. M. Advanced Materials 2010, 22, E28.
[29]
3 Whittingham M. S. Proceedings of the IEEE 2012, 100, 1518. doi: 10.1109/JPROC.2012.2190170
[30]
5 Cabana J. ; Monconduit L. ; Larcher D. ; Palacín M. R. Advanced Materials 2010, 22, E170.
[31]
刘养浩; 徐友龙; 孙孝飞. 化工新型材料, 2014, 42, 1.
[32]
7 Sun X. F. ; Xu Y. L. ; Liu Y. H. ; Li L. Acta Phys. -Chim. Sin. 2012, 28, 2885. doi: 10.3866/PKU.WHXB201209271
[33]
8 Manthiram, A. The Journal of Physical Chemistry Letters 2011, 2, 176. doi: 10.1021/jz1015422
[34]
17 Su, J.; Wu, X. L.; Lee, J. S.; Kim, J.; Guo, Y. G. Journal of Materials Chemistry A 2013, 1, 2508. doi: 10.1039/c2ta01254e
[35]
18 Tang, Y.; Zhong, Y. J.; Ou, Q. Z.; Liu, H.; Zhong, B. H.; Guo, X. D.; Wang, X. L. Acta Phys. -Chim. Sin. 2015, 31, 277.
[36]
21 Liu H. ; Bi S. ; Wen G. ; Teng X. ; Gao P. ; Ni Z. ; Zhu Y. ; Zhang F. Journal of Alloys and Compounds 2012, 543, 99. doi: 10.1016/j.jallcom.2012.07.077
[37]
22 Yan J. ; Yuan W. ; Tang Z. Y. ; Xie H. ; Mao W. F. ; Ma L. Journal of Power Sources 2012, 209, 251. doi: 10.1016/j.jpowsour.2012.02.110
[38]
30 Yuan W. ; Yan J. ; Tang Z. ; Sha O. ; Wang J. ; Mao W. ; Ma L. Electrochimica Acta 2012, 72, 138.
[39]
35 Sun X. ; Xu Y. ; Jia M. ; Ding P. ; Liu Y. ; Chen K. Journal of Materials Chemistry A 2013, 1, 2501. doi: 10.1039/c2ta01338j
[40]
36 Tang Y. ; Wang C. ; Zhou J. ; Bi Y. ; Liu Y. ; Wang D. ; Shi S. ; Li G. Journal of Power Sources 2013, 227, 199. doi: 10.1016/j.jpowsour.2012.11.020