具有无机-有机杂化钙钛矿结构的CH3NH3PbI3通常偏向于显示n型半导体特性,本文以五氧化二钽(Ta2O5)作为绝缘层,制备了基于钙钛矿CH3NH3PbI3单晶的顶栅结构场效应晶体管,暗态下更明显地观察到了CH3NH3PbI3所具有的p型场效应特性,空穴场效应迁移率达到8.7×10-5 cm2·V-1·s-1,此暗态空穴迁移率比原有报道的基于CH3NH3PbI3多晶薄膜的SiO2底栅场效应晶体管提高了一个数量级。此外,光照对CH3NH3PbI3单晶场效应晶体管的性能有强烈影响。与底栅结构CH3NH3PbI3多晶场效应晶体管不同,即使有栅极和绝缘层的遮挡,5.00 mW·cm-2的光照仍可使CH3NH3PbI3单晶场效应晶体管的空穴电流提高一个数量级(VGS(栅源电压)=VDS(漏源电压)=20 V),光响应度达到2.5 A·W-1。本文工作实现了对CH3NH3PbI3场效应晶体管载流子传输的选择性调控,表明在没有外部因素的参与下,通过合适的器件设计,CH3NH3PbI3同样具有制备成双极性晶体管的潜力。 Organic-inorganic hybrid perovskite methylammonium lead iodide (CH3NH3PbI3) generally tends to show n-type semiconductor properties. In this work, a field-effect transistor (FET) device based on a CH3NH3PbI3 single crystal with tantalum pentoxide (Ta2O5) as the top gate dielectric was fabricated. The p-type field-effect transport properties of the device were observed in the dark. The hole mobility of the device extracted from transfer characteristics in the dark was 8.7×10-5 cm2·V-1·s-1, which is one order of magnitude higher than that of polycrystalline FETs with SiO2 as the bottom gate dielectric. In addition, the effect of light illumination on the CH3NH3PbI3 single-crystal FET was studied. Light illumination strongly influenced the field effect of the device because of the intense photoelectric response of the CH3NH3PbI3 single crystal. Different from a CH3NH3PbI3 polycrystalline FET with a bottom gate dielectric, even with the top gate dielectric shielding, light illumination of 5.00 mW·cm-2 caused the hole current to increase by one order of magnitude compared with that in the dark (VGS (gate-source voltage)=VDS (drain-source voltage)=20 V) and the photoresponsivity reached 2.5 A·W-1. The introduction of Ta2O5 as the top gate dielectric selectively enhanced hole transport in the single-crystal FET, indicating that in the absence of external factors, by appropriate device design, CH3NH3PbI3 also has potential for use in ambipolar transistors
References
[1]
1 Kim H. S. ; Lee C. R. ; Im J. H. ; Lee K. B. ; Moehl T. ; Marchioro A. ; Moon S. J. ; Humphry-Baker R. ; Yum J. H. ; Moser J. E. Sci. Rep 2012, 2, 591. doi: 10.1038/srep00591
[2]
3 Burschka J. ; Pellet N. ; Moon S. J. ; Humphry-Baker R. ; Gao P. ; Nazeeruddin M. K. ; Gr?tzel M. Nature 2013, 499, 316. doi: 10.1038/nature12340
[3]
16 Sum T. C. ; Mathews N. Energy Environ. Sci 2014, 7, 2518. doi: 10.1039/c4ee00673a
[4]
18 Chin X. Y. ; Cortecchia D. ; Yin J. ; Bruno A. ; Soci C. Nat. Commun 2015, 6, 7383. doi: 10.1038/ncomms8383
[5]
21 Poglitsch A. ; Weber D. J.Chem. Phys 1987, 87, 6373. doi: 10.1063/1.453467
[6]
22 Dang Y. ; Liu Y. ; Sun Y. ; Yuan D. ; Liu X. ; Lu W. ; Liu G. ; Xia H. ; Tao X. CrystEngComm 2015, 17, 665. doi: 10.1039C4CE02106A
[7]
23 Im J. H. ; Lee C. R. ; Lee J.W. ; Park S.W. ; Park N. G. Nanoscale 2011, 3, 4088. doi: 10.1039/c1nr10867k
[8]
24 Lian Z. ; Yan Q. ; Lv Q. ; Wang Y. ; Liu L. ; Zhang L. ; Pan S. ; Li Q. ; Wang L. ; Sun J. L. Sci. Rep 2015, 5, 16563. doi: 10.1038/srep16563
[9]
25 Xiao Z. ; Yuan Y. ; Shao Y. ; Wang Q. ; Dong Q. ; Bi C. ; Sharma P. ; Gruverman A. ; Huang J. Nat. Mater 2015, 14, 193. doi: 10.1038/NMAT4150
[10]
26 Liu X. ; Zhao H. ; Dong G. ; Duan L. ; Li D. ; Wang L. ; Qiu Y. ACS Appl. Mater. Interfaces 2014, 6, 8337. doi: 10.1021am501197d
[11]
27 Liang Y. ; Dong G. ; Hu Y. ; Wang L. ; Qiu Y. Appl. Phys. Lett 2005, 86, 132101. doi: 10.1063/1.1896099
[12]
17 Heo J. H. ; Im S. H. ; Noh J. H. ; Mandal T. N. ; Lim C. S. ; Chang J. A. ; Lee Y. H. ; Kim H. J. ; Sarkar A. ; Nazeeruddin M. K. Nat. Photonics 2013, 7, 486. doi: 10.1038nphoton.2013.80
[13]
2 Etgar L. ; Gao P. ; Xue Z. ; Peng Q. ; Chandiran A. K. ; Liu B. ; Nazeeruddin M. K. ; Gratzel M. J.Am. Chem. Soc 2012, 134, 17396. doi: 10.1021/ja307789s
[14]
4 Liu M. ; Johnston M. B. ; Snaith H. J. Nature 2013, 501, 395. doi: 10.1038/nature12509
[15]
5 Zhou H. ; Chen Q. ; Li G. ; Luo S. ; Song T. B. ; Duan H. S. ; Hong Z. ; You J. ; Liu Y. ; Yang Y. Science 2014, 345, 542. doi: 10.1126/science.1254050
[16]
7 Tan Z. K. ; Moghaddam R. S. ; Lai M. L. ; Docampo P. ; Higler R. ; Deschler F. ; Price M. ; Sadhanala A. ; Pazos L. M. ; Credgington D. Nat. Nanotech 2014, 9, 687. doi: 10.1038nnano.2014.149
[17]
9 Fang H. ; Li Q. ; Ding J. ; Li N. ; Tian H. ; Zhang L. ; Ren T. ; Dai J. ; Wang L. ; Yan Q. J.Mater. Chem. C 2016, 4, 630. doi: 10.1039/C5TC03342J
[18]
12 Xing G. ; Mathews N. ; Sun S. ; Lim S. S. ; Lam Y. M. ; Gr?tzel M. ; Mhaisalkar S. ; Sum T. C. Science 2013, 342, 344. doi: 10.1126/science.1243167
[19]
14 Giorgi G. ; Fujisawa J. I. ; Segawa H. ; Yamashita K. J.Phys. Chem. Lett 2013, 4, 4213. doi: 10.1021/jz4023865
[20]
15 Gr?tzel M. Nat. Mater 2014, 13, 838. doi: 10.1038/nmat4065
[21]
6 Xiao J. ; Zhang H. L. Acta Phys. -Chim. Sin 2016, 32, 1894. doi: 10.3866PKU.WHXB201605034
[22]
8 Yan K. ; Peng M. ; Yu X. ; Cai X. ; Chen S. ; Hu H. ; Chen B. ; Gao X. ; Dong B. ; Zou D. J.Mater. Chem. C 2016, 4, 1375. doi: 10.1039/C6TC00141F
[23]
19 Li F. ; Ma C. ; Wang H. ; Hu W. ; Yu W. ; Sheikh A. D. ; Wu T. Nat. Commun 2015, 6, 8238. doi: 10.1038/ncomms9238
[24]
20 Shokouh S. H. H. ; Jeon P. J. ; Pezeshki A. ; Choi K. ; Lee H.S. ; Kim J. S. ; Park E. Y. ; Im S. Adv. Funct. Mater 2015, 25, 7208. doi: 10.1002/adfm.201502008
10 Lee M. M. ; Teuscher J. ; Miyasaka T. ; Murakami T. N. ; Snaith H. J. Science 2012, 338, 643. doi: 10.1126science.1228604
[27]
11 DeWolf S. ; Holovsky J. ; Moon S. J. ; Loper P. ; Niesen B. ; Ledinsky M. ; Haug F. J. ; Yum J. H. ; Ballif C. J.Phys. Chem. Lett 2014, 5, 1035. doi: 10.1021/jz500279b
[28]
13 Stoumpos C. C. ; Malliakas C. D. ; Kanatzidis M. G. Inorg. Chem 2013, 52, 9019. doi: 10.1021/ic401215x