全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 


DOI: 10.3866/PKU.WHXB201704272

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过在硅片表面有机蒸镀不同厚度的二十九烷制备了不同晶体密度的仿生旱金莲叶面蜡质纳米结构表面,采用端基修饰多巴的原子力显微镜胶体探针,对各纳米结构表面进行了粘附性能测试,发现蒸镀200nm厚度二十九烷结晶的纳米结构表面具有较低粘附力。采用反应离子刻蚀方法制备了不同高度的硅材质仿生鲨鱼皮微米结构表面,并选择了200nm厚度二十九烷在仿生鲨鱼皮表面进行有机蒸镀制备了微纳复合结构表面,通过胶体探针的研究发现多巴与高度为1、3、5μm微纳复合结构表面的粘附力均小于与200nm厚度二十九烷结晶的纳米结构表面之间的粘附力,说明微纳复合结构表面具有很强的抗多巴粘附能力,并且这种复合结构表面相对于硅材质的仿生鲨鱼皮微米结构表面还兼有旱金莲叶面的强疏水性和极佳的抗水粘附能力。
Nanostructured surfaces similar to those found in nasturtium leaf waxes were prepared by organic vapor deposition on a silicon wafer, with a range of crystal densities. The nanostructured surface consisting of 200 nm thick nonacosane showed the lowest adhesion. Bionic shark skin-like surfaces with different heights were prepared by reactive ion etching. Surfaces with a hierarchical structure were prepared by organic vapor deposition on the bionic shark skin with a thickness of 200 nm. 3, 4-dihydroxyphenylalanine (DOPA) showed lower adhesion on the hierarchical structures as compared to the nanostructured surfaces, indicating that the surfaces with a hierarchical structure were strongly anti-adhesive and hydrophobic, with excellent resistance to water adhesion

References

[1]  1 Callow J. A. ; Callow M. E. Nat.Commun. 2011, 2 (1), 244. doi: 10.1038/ncomms1251
[2]  6 Fukagata K. ; Kasagi N. ; Koumoutsakos P. Phys. Fluids 2006, 18 (5), 360. doi: 10.1063/1.2205307
[3]  8 Yang H. ; Deng Y. J. Colloid Interface Sci. 2008, 325 (2), 588. doi: 10.1016/j.jcis.2008.06.034
[4]  18 Barthlott W. ; Neinhuis C. Planta 1997, 202 (1), 1. doi: 10.1007/s004250050096
[5]  19 Neinhuis C. ; Barthlott W. Ann. Bot. 1997, 79 (6), 667. doi: 10.1006/anbo.1997.0400
[6]  20 Feng L. ; Li S. H. ; Li Y. S. ; Li H. J. ; Zhang L. J. ; Zhai J. ; Song Y. L. ; Liu B. Q. ; Jiang L. ; Zhu D. B. Adv. Mater. 2002, 14 (24), 1857. doi: 10.1002/adma.200290020
[7]  21 Zhang D. Y. ; Cai J. ; Li X. ; Jiang X.G. ; Han X. ; Chen Bo. Journal of Mechanical Engineering 2010, 46 (5), 88. doi: 10.3901/JME.2010.05.088
[8]  张德远; 蔡军; 李翔; 姜兴刚; 韩鑫; 陈博. 机械工程学报, 2010, 46 (5), 88. doi: 10.3901/JME.2010.05.088
[9]  31 Lee J. W. ; Hong J. ; Pearton S. J.Appl. Phys. Lett. 1996, 68 (6), 847. doi: 10.1063/1.116553
[10]  32 Razvag Y. ; Gutkin V. ; Reches M. Langmuir 2013, 29 (32), 10102. doi: 10.1021/la4015866
[11]  33 Li Y. R. ; Qin M. ; Li Y. ; Cao Y. ; Wang W. Langmuir 2014, 30 (15), 4358. doi: 10.1021/la501189n
[12]  34 Yu J. ; Kan Y. ; Rapp M. ; Danner E. ; Wei W. ; Das S. ; Miller D. R. ; Chen Y. ; Waite J. H. ; Israelachvili J. N. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (39), 15680. doi: 10.1073/pnas.1315015110
[13]  14 Lee H. ; Scherer N. F. ; Messersmith P. B. Proc. Natl. Acad. Sci. U. S. A 2006, 103 (35), 12999. doi: 10.1073/pnas.0605552103
[14]  15 Wang J. J. ; Tahir M. N. ; Kappl M. ; Tremel W. ; Metz N. ; Barz M. ; Theato P. ; Butt H. J. Adv. Mater. 2008, 20 (20), 3872. doi: 10.1002/adma.200801140
[15]  16 Lin Q. ; Gourdon D. ; Sun C. J. ; Holten-Andersen N. ; Anderson T. H. ; Waite J. H. ; Israelachvili J. N. Proc. Natl. Acad. Sci. U. S.A. 2007, 104 (10), 3782. doi: 10.1073/pnas.0607852104
[16]  2 Schultz M. P. ; Bendick J. A. ; Holm E. R. ; Hertel W. M. Biofouling 2011, 27 (1), 87. doi: 10.1080/08927014.2010.542809
[17]  11 Papov V. V. ; Diamond T. V. ; Biemann K. ; Waite J. H. J.Biol. Chem. 1995, 270 (34), 20183. doi: 10.1074/jbc.270.34.20183
[18]  12 Waite J. H. ; Qin X. Biochemistry 2011, 40 (9), 2887. doi: 10.1021/bi002718x
[19]  13 Yu M. ; Hwang J. ; Deming T. J. J.Am. Chem. Soc 1999, 121 (24), 5825. doi: 10.1021/ja990469y
[20]  3 Schumacher J. F. ; Aldred N. ; Callow M. E. ; Finlay J. A. ; Callow J.A. ; Clare A. S. Biofouling 2007, 23 (5-6), 307. doi: 10.1080/08927010701393276
[21]  4 Chambers L. D. ; Stokes K. R. ; Walsh F. C. ; Wood R. J. K. Surf. Coat.Technol. 2006, 201 (6), 3642. doi: 10.1016/j.surfcoat.2007.04.001
[22]  5 Ou. J. ; Rothstein J. P. Phys. Fluids 2005, 17 (10), 1. doi: 10.1063/1.2109867
[23]  7 Ma J. W. ; Sun Y. K. ; Gleichauf K. ; Lou J. ; Li Q. L. Langmuir 2011, 27 (16), 10035. doi: 10.1021/la2010024
[24]  9 Waite J. H. ; Ann N. Y. Acad. Sci. 1999, 875 (1), 301. doi: 10.1111/j.1749-6632.1999.tb08513.x
[25]  10 Waite J.H. Int. J.Adhes. Adhes. 1987, 7 (1), 9. doi: 10.1016/0143-7496(87)90048-0
[26]  17 Frank B. P. ; Belfort G Biotechnol. Prog. 2002, 18 (3), 580. doi: 10.1021/bp010140s
[27]  22 Luo Y. ; Liu Y. ; Erson J. Appl. Phys. A 2015, 120 (5), 369. doi: 10.1007/s00339-015-9198-9
[28]  29 Koch K. ; Aarnoud D. ; Barthlott W. Crystal Growth & Design 2006, 6 (11), 2571. doi: 10.1021/cg060035w
[29]  23 Bixler G. D. ; Bhushan B. Adv. Funct. Mater. 2013, 23 (36), 4507. doi: 10.1002/adfm.201203683
[30]  24 Carman M. L. ; Estes T. G. ; Feinberg A. W. ; Schumacher J.F. ; Wilkerson W. ; Wilson L. H. Biofouling 2006, 22 (1-2), 11. doi: 10.1080/08927010500484854
[31]  25 Schumacher J. F. ; Christopher J. ; Callow M. E. ; Finlay J. A. ; Callow J. A. ; Brennan A. B. Langmuir 2008, 24 (9), 4931. doi: 10.1021/la703421v
[32]  26 Magin C. M. ; Long C. J. ; Cooper S. P. ; Ista L. K. ; López G.P. ; Brennan A. B. Biofouling 2010, 26 (6), 719. doi: 10.1080/08927014.2010.511198
[33]  27 Bhushan B. ; Koch K. ; Yong C. J. Soft Matter 2008, 4 (9), 1799. doi: 10.1039/b808146h
[34]  28 Bhushan B. ; Yong C. Y. ; Niemietz A. ; Koch K. Langmuir 2009, 25 (3), 1659. doi: 10.1021/la802491k
[35]  30 Bondur J. A. J. Vac.Sci.Technol. 1976, 13 (5), 1023. doi: 10.1116/1.569054

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133