势能面在分子反应动力学的研究中起着非常重要的作用.本文提出了一种新的势能面构建方法——多中心分区法.通过比较London-Eyring-Polanyi-Sato (LEPS)势能、多体展开势能、置换对称不变多项式三种方法,确定了H3分子的最佳势能函数表达形式,并应用准经典轨线方法分析了势能面的合理性,结果表明置换对称不变多项式能很好地描述H3分子的势能面特征.结合置换对称不变多项式和本文提出的多中心分区方法,可以有效改善H3分子势能面的精度并可能推广到高维反应势能面. The potential energy surface plays an important role in studying molecular reaction dynamics. In this work, a new method, namely the "multi-center partition" method, is proposed to construct the potential energy surface of H3. The optimized function is first determined by comparing the London-Eyring-Polanyi-Sato (LEPS) potential, the many-body expansion potential, and the permutation-invariant polynomial potential. This comparison shows that the permutation-invariant polynomial fitting proposed by Bowman is the most efficient method for describing the topology of the H3 system. The quasi-classical trajectory method is used to analyze the rationality of those potential energy surfaces. By combining the multi-center partition method with the permutation-invariant polynomial method, the accuracy of the H3 molecular potential energy surface is greatly improved and could possibly be used in the fitting of potential energy surfaces in other systems
References
[1]
1 Sun Z. F. ; Gao Z. ; Wu X. K. ; Tang G. Q. ; Zhou X. G. ; Liu S. L. Acta Phys. -Chim. Sin 2015, 31, 829. doi: 10.3866/PKU.WHXB201503041
[2]
4 Ramazani S. ; Frankcombe T. J. ; Andersson S. ; Collins M. A. J. Chem. Phys 2009, 130 (24), 244302. doi: 10.1063/1.3156805
[3]
5 Moyano G. E. ; Jones S. A. ; Collins M. A. J. Chem. Phys 2006, 124 (12), 124318. doi: 10.1063/1.2181571
[4]
7 Evenhuis C. R. ; Collins M. A. ; Lin X. ; Zhang O. H. Amer. Chem. Soc 2004, 227, 259.
[5]
8 Moyano G. E. ; Pearson D. ; Collins M. A. J. Chem. Phys 2004, 121 (24), 12396. doi: 10.1063/1.1810479
[6]
9 Castillo J. F. ; Aoiz F. J. ; Ba?ares L. ; Collins M. A. J. Phys. Chem. A 2004, 108 (32), 6611. doi: 10.1021/jp048366b
[7]
10 Moyano G. E. ; Collins M. A. J. Chem. Phys 2003, 119 (11), 5510. doi: 10.1063/1.1599339
[8]
11 Fuller R. O. ; Bettens R. P. A. ; Collins M. A. J. Chem. Phys 2001, 114 (24), 10711. doi: 10.1063/1.1377602
[9]
12 Song K. ; Collins M. A. Chem. Phys. Lett 2001, 335 (5), 481.
[10]
16 Li H. ; Le R. R. J. J. Chem. Phys 2006, 125 (4), 044307. doi: 10.1063/1.2212933
[11]
18 Wu T. ; Manthe U. J. Chem. Phys 2003, 119 (1), 14. doi: 10.1063/1.1577328
[12]
29 Sumpter B. G. ; Noid D. W. Chem. Phys. Lett 1992, 192 (5), 455.
[13]
2 Li W. ; Qu J. Y. ; Zhao X. S. Acta Phys. -Chim. Sin 2003, 19 (8), 751. doi: 10.3866/PKU.WHXB20030816
6 Moyano G. E. ; Collins M. A. Theor. Chem. Acc 2005, 113 (4), 225. doi: 10.1007/s00214-004-0626-8
[20]
13 Collins M. A. ; Zhang D. H. J. Chem. Phys 1999, 111 (22), 9924. doi: 10.1063/1.480344
[21]
14 Bettens R. P. A. ; Hansen T. A. ; Collins M. A. J. Chem. Phys 1999, 111 (14), 6322. doi: 10.1063/1.479937
[22]
17 Li A. Y. ; Xie D. Q. J. Chem. Phys 2010, 133 (14), 144306. doi: 10.1063/1.3490642
[23]
20 Takata T. ; Taketsugu T. ; Hirao K. ; Gordon M. S. J. Chem. Phys 1998, 109 (11), 4281. doi: 10.1063/1.477032
[24]
21 Crespos C. ; Collins M. A. J. Chem. Phys 2004, 120 (5), 2392. doi: 10.1063/1.1637337
[25]
26 Bowman J. M. ; Czako G. ; Fu B. Phys. Chem. Chem. Phys 2011, 13 (18), 8094. doi: 10.1039/c0cp02722g
[26]
27 Pukrittayakamee A. ; Malshe M. ; Hagan M. ; Raff L. M. ; Narulkar R. ; Bukkapatnum S. ; Komanduri R. J. Chem. Phys 2009, 130 (13), 134101. doi: 10.1063/1.3095491
[27]
30 Blank T. B. ; Brown S. D. ; Calhoun A. W. ; Doren D. J. J. Chem. Phys 1995, 103 (10), 4129. doi: 10.1063/1.469597
[28]
34 Aguado A. ; Paniagua M. J. Chem. Phys 1992, 96 (2), 1265. doi: 10.1063/1.462163
[29]
3 Le H. A. ; Frankcombe T. J. ; Collins M. A. J. Phys. Chem. A 2010, 114 (40), 10783. doi: 10.1021/jp1060182
[30]
15 Jordan M. J. T. ; Collins M. A. J. Chem. Phys 1996, 104 (12), 4600. doi: 10.1063/1.471207
[31]
19 Ishida T. ; Schatz G. C. J. Chem. Phys 1997, 107 (9), 3558. doi: 10.1063/1.474695
[32]
22 Wang M. ; Sun X. ; Bian W. ; Cai Z. J. Chem. Phys 2006, 124 (23), 234311. doi: 10.1063/1.2203610
[33]
23 Dawes R. ; Thompson D. L. ; Guo Y. ; Wagner A. F. ; Minkoff M. J. Chem. Phys 2007, 126 (18), 184108. doi: 10.1063/1.2730798
[34]
24 Corchado J. C. ; Bravo J. L. ; Espinosa-Garcia J. J. Chem. Phys 2009, 130 (18), 184314. doi: 10.1063/1.3132223
[35]
25 Varandas A. J. C. ; Brown F. B. ; Mead C. A. J. Chem. Phys 1987, 86, 6258. doi: 10.1063/1.452463
[36]
28 Le H. M. ; Raff L. M. J. Phys. Chem. A 2010, 114 (1), 45. doi: 10.1021/jp907507z