首先采用溶剂热法制备具有良好光催化降解性能的多孔ZnO纳米棒,随后采用化学沉积法在ZnO纳米棒表面修饰碳点,成功制备碳点修饰多孔ZnO纳米棒系列光催化剂.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)分光光谱等技术对系列样品进行表征.通过测试系列样品在氙灯光源照射下,降解有机污染物(罗丹明B和苯酚)的光催化性能,发现碳点修饰多孔ZnO纳米棒能有效增强ZnO的光催化性能,其中质量分数为1.2%碳点修饰ZnO纳米棒(CZn1.2)表现出最高的光催化降解罗丹明B活性,为纯多孔ZnO纳米棒的2.5倍;同时,在氙灯光源照射下,碳点修饰多孔ZnO纳米棒具有很强的氧化性,能够催化苯环的开环反应,实现对苯酚的降解.其光催化活性的增强在于碳点修饰多孔ZnO光催化材料中,碳点作为光生电子受体,促进半导体光生电子与空穴的有效分离,从而增强光催化性能. Porous ZnO nanorods that displayed excellent photocatalytic degradation of organic pollutants (RhB and phenol) were prepared via a solvent thermal method followed by surface modification with carbon dots (C-dots) using a deposition method. The photocatalysts were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-Vis) spectroscopy. The degradation of the organic pollutants using the nanorods was tested under Xe-light illumination and was enhanced following C-dot modification. Nanorods that were modified by the C-dots at a mass fraction of 1.2% (CZn1.2) exhibited the highest photocatalytic activity for the degradation of RhB, which was 2.5 times of the pure porous ZnO nanorods. Additionally, the modified nanorods with strangely oxidation ability could catalyze the degradation of phenol by open-rings reaction under Xe-light illumination. The improved photocatalytic activity was attributed to the effective separation of the photogenerated electrons and holes, in which the C-dots served as the receptor of the photogenerated electrons
References
[1]
38 Yu X. J. ; Liu J. J. ; Yu Y. C. ; Zuo S. L. ; Liu B. S. Carbon 2014, 68, 718. doi: 10.1016/j.carbon.2013.11.053
[2]
39 Su R. ; Tiruvalam R. ; He Q. ; Dimitratos N. ; Kesavan L. ; Hammond C. ; Lopez-Sanchez J. A. ; Bechstein R. ; Kiely C. J. ; Hutchings G. J. ; Besenbacher F. ACS Nano 2012, 6, 6284. doi: 10.1021/nn301718v
[3]
37 Rajbongshi B. M. ; Samdarshi S. K. Appl. Catal. B 2014, 144, 435. doi: 10.1016/j.apcatb.2013.07.048
18 Wu L. L. ; Tian R. X. ; Zhao Q. ; Chang Q. ; Hu S. L. Chem. J. Chin. Univ 2014, 35, 717.
[9]
19 Sun X. ; Tuo J. Q. ; Yang W. Y. ; Yang D. J. Nano Reports 2015, 2, 51.
[10]
22 De B. ; Voit B. ; Karak N. RSC Adv 2014, 102, 58453.
[11]
23 Zhang H. C. ; Huang H. ; Ming H. ; Li H. T. ; Zhang L. L. ; Liu Y. ; Kang Z. H. J. Mater. Chem 2012, 22, 10501. doi: 10.1039/c2jm30703k
[12]
27 Jassby D. ; Farner B. J. ; Wiesner M. Environ. Sci. Technol 2012, 46, 6934. doi: 10.1021/es202009h
[13]
31 Xu Y. G. ; Xu H. ; Li H. M. ; Xia J. X. ; Liu C. T. ; Liu L. J. Alloy. Compd 2011, 509, 3286. doi: 10.1016/j.jallcom.2010.11.193
[14]
20 Li H. ; He X. ; Kang Z. ; Huang H. ; Liu Y. ; Liu J. ; Lian S. ; Tsang C. H. ; Yang X. ; Lee S. T. Angew. Chem. Int. Edit 2010, 49, 4430. doi: 10.1002/anie.200906154
[15]
30 Peng Y. ; Qin S. ; Wang W. S. ; Xu A. W. CrystEngComm 2013, 15, 6518. doi: 10.1039/c3ce40798e
[16]
32 Zhang H. ; Fan X. ; Quan X. ; Chen S. ; Yu H. Environ. Sci. Technol 2011, 45, 5731. doi: 10.1021/es2002919
[17]
34 Dong Y. Q. ; Wang R. X. ; Li H. ; Shao J. W. ; Chi Y. W. ; Lin X. M. ; Chen G. N. Carbon 2012, 50, 2810. doi: 10.1016/j.carbon.2012.02.046
[18]
35 Peng W. Q. ; Qu S. C. ; Cong G. W. ; Wang Z. G. Cryst. Growth Des 2006, 6, 1518. doi: 10.1021/cg0505261
[19]
36 Li Y. ; Zhang B. P. ; Zhao J. X. J. Alloy. Compd 2014, 586, 663. doi: 10.1016/j.jallcom.2013.10.085
[20]
40 Xue C. ; Wang T. ; Yang G. D. ; Yang B. L. ; Ding S. J. J. Mater. Chem. A 2014, 2, 7674. doi: 10.1039/c4ta01190b
10 Li X. Q. ; Fan Q. F. ; Li G. L. ; Huang Y. H. ; Gao Z. ; Fan X. M. ; Zhang C. L. ; Zhou Z. W. Acta Phys. -Chim. Sin 2015, 31, 783. doi: 10.3866/PKU.WHXB201502062
[23]
11 Zhu C. Q. ; Lu B. G. ; Su Q. ; Xie E. Q. ; Lan W. Nanoscale 2012, 4, 3060. doi: 10.1039/c2nr12010k
[24]
12 Samadi M. ; Shivaee H. A. ; Zanetti M. ; Pourjavadi A. ; Moshfegh A. J. Mol. Catal. A: Chem 2012, 359, 42. doi: 10.1016/j.molcata.2012.03.019
[25]
13 Bu Y. Y. ; Chen Z. Y. J. Power Sources 2014, 272, 647. doi: 10.1016/j.jpowsour.2014.08.127
[26]
武玲玲; 田瑞雪; 赵清; 常青; 胡胜亮. 高等学校化学学报, 2014, 35, 717.
[27]
21 Ming H. ; Ma Z. ; Liu Y. ; Pan K. M. ; Yu H. ; Wang F. ; Kang Z. H. Dalton Trans 2012, 41, 9526. doi: 10.1039/c2dt30985h
[28]
1 Maeda K. ; Teramura K. ; Lu D. ; Takata T. ; Saito N. ; Inoue Y. ; Domen K. Nature 2006, 440, 295. doi: 10.1038/440295a
[29]
2 Bu Y. Y. ; Chen Z. Y. RSC Adv 2014, 4, 45397. doi: 10.1039/C4RA06641C
[30]
3 Kudo A. ; Miseki Y. Chem. Soc. Rev 2009, 38, 253. doi: 10.1039/B800489G
[31]
4 Xie J. ; Wang H. ; Duan M. Acta Phys. -Chim. Sin 2011, 27, 193. doi: 10.3866/PKU.WHXB20110124
5 Li D. H. ; Yang D. J. ; Quan F. Y. ; Wang B. B. ; Zhang L. J. ; Zhu S. S. ; Wang L. J. Nano Reports 2015, 1, 29.
[34]
6 Liu H. ; Wu X. F. ; Li X. Q. ; Wang J. ; Fan X. M. Chin. J. Catal 2014, 35, 1997. doi: 10.1016/S1872-2067(14)60198-4
[35]
7 Xu F. ; Sun L. Energy Environ. Sci 2011, 4, 818. doi: 10.1039/C0EE00448K
[36]
8 Huang J. ; Yin Z. G. ; Zheng Q. D. Energy Environ. Sci 2011, 4, 3861. doi: 10.1039/c1ee01873f
[37]
14 Sun X. ; Li Q. ; Jiang J. C. ; Mao Y. B. Nanoscale 2014, 6, 8769. doi: 10.1039/C4NR01146E
[38]
16 Wang X. W. ; Yin L. C. ; Liu G. ; Wang L. Z. ; Saito R. ; Lu G. Q. ; Cheng H. M. Energy Environ. Sci 2011, 4, 3976. doi: 10.1039/c0ee00723d
[39]
17 Zhang Y. ; Lin S. ; Zhang Y. ; Song X. M. Acta Phys. -Chim. Sin 2013, 29, 2399. doi: 10.3866/PKU.WHXB201309061
[40]
24 Li H. T. ; Kang Z. H. ; Liu Y. ; Lee S. T. J. Mater. Chem 2012, 22, 24230. doi: 10.1039/c2jm34690g
[41]
25 Wang J. ; Huang H. M. ; Xu Z. Z. ; Kou J. H. ; Lu C. H. Curr. Org. Chem 2014, 18, 1346. doi: 10.2174/1385272819666140424214022
[42]
26 Yu W. L. ; Zhang J. F. ; Peng T. Y. Appl. Catal. B 2016, 181, 220. doi: 10.1016/j.apcatb.2015.07.031
[43]
28 Skompska M. ; Zar?bska K. Electrochim. Acta 2014, 127, 467. doi: 10.1016/j.electacta.2014.02.049
[44]
29 Liu J. ; Liu Y. ; Liu N. Y. ; Han Y. Z. ; Zhang X. ; Huang H. ; Lifshitz Y. ; Lee S. T. ; Zhong J. ; Kang Z. H. Science 2015, 347, 970. doi: 10.1126/science.aaa3145
[45]
33 Wen Y. ; Ding H. ; Shan Y. Nanoscale 2011, 3, 4411. doi: 10.1039/c1nr10604j