对半导体材料进行表面化学修饰或改性,是提高其光催化活性、有效利用光能的一种重要措施.本文结合水热化学法、化学池沉积和后续热处理等,分别制备了未修饰α-Fe2O3和钒修饰的α-Fe2O3光电极材料.利用X射线粉末衍射(XRD)谱和紫外-可见漫反射光谱(UV-Vis-DRS)技术分析表征了材料的晶相结构、化学组成和光谱吸收等固体物理化学性能;利用光电流测量和电化学交流阻抗谱(EIS)实验技术,并基于1 mol·L-1NaOH (pH 13.6)中的光电化学水分解反应,研究了钒修饰对α-Fe2O3材料光电化学性能的增强作用.结果表明,与未修饰的Fe2O3材料相比,钒修饰α-Fe2O3样品出现FeVO4的XRD特征峰,但临界光吸收波长未发生红移;钒修饰使Fe2O3材料的光电流增大4-5倍、光生载流子在电极表面的复合几率降低了3/4-4/5、电极表面电荷传递速率(表观一级速率常数)明显提高.结合Fe2O3/溶液界面半导体能带模型和有关研究结果,分析了研究体系的界面电荷动力学传输过程以及钒修饰使α-Fe2O3材料光电化学性能增强的原因. Surface modification of semiconductor materials is an effective way to improve their photocatalysis and photo-conversion activities. Bare and V-modified α-Fe2O3 photoelectrode materials were prepared using hydrothermal, chemical bath deposition and heat treatment approaches. Their physicochemical and photoelectrochemical (PEC) properties were then investigated with X-ray diffractometry (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), voltammetry, and electrochemical AC impedance spectroscopy (EIS) techniques. The existence of FeVO4 was indicated by its characteristic X-ray diffractometry patterns, while no significant red shifts in the photoabsorption edge were detected in UV-Vis diffuse reflectance spectroscopy spectra. With V-modified and bare Fe2O3 serving as a photoanode, photoelectrochemical measurements were carried out for water splitting in 1 molmol·L-1 NaOH (pH 13.6). The enhancement of α-Fe2O3 photoelectrochemical activities through V-modification was indicated by significantly increased photocurrents and decreased photocharge-recombination probability. By measuring electrochemical AC impedance spectroscopy spectra, pseudo-first-order rate constants for the charge transfer at the illuminated electrode/solution interface were estimated. The rate constant for V-modification of the Fe2O3 electrode was higher than that of the bare Fe2O3 electrode. Improved interfacial charge transfer kinetics through V-modification is responsible for the enhanced photoelectrochemical activities of α-Fe2O3. The interfacial photocharge transfer and recombination processes and their properties are discussed with a semiconductor energy band model constructed for the electrode system
References
[1]
7 Rangaraju R. R. ; Raja K. S. ; Panday A. ; Misra M. Electrochim. Acta 2010, 55, 785. doi: 10.1016/j.electacta.2009.07.012
[2]
8 Pradhan G. K. ; Padhi D. K. ; Parida K. M. ACS Appl. Mater. Interfaces 2013, 5, 9101. doi: 10.1021/am402487h
[3]
9 Lee C. Y. ; Wang L. ; Kado Y. ; Kirchgeorg R. ; Schmuki P. Electrochem. Commun 2013, 34, 308. doi: 10.1016/j.elecom.2013.07.024
[4]
10 Wang L. ; Lee C.Y. ; Schmuki P. Electrochem. Commun 2013, 30, 21. doi: 10.1016/j.elecom.2013.01.013
[5]
11 Shangguan P. P. ; Tong S. P. ; Li H. L. ; Leng W. H. Acta Phys. -Chim. Sin 2013, 29, 1954. doi: 10.3866/PKU.WHXB201306261
15 Shaban Y. A. ; Khan S. U. M. Sci. Adv. Mater 2012, 4, 356. doi: 10.1166/sam.2012.1292
[10]
16 Barroso M. ; Mesa C. A. ; Pendlebury S. R. ; Cowan A. J. ; Hisatomi T. ; Sivula K. ; Gr?tzel M. ; Klug D. R. ; Durrant J. R. PNAS 2012, 109, 15640. doi: 10.1073/pnas.1118326109
[11]
20 Peter L. M. ; Wijayantha K. G. U. ; Tahir A. A. Faraday Discuss 2012, 155, 309. doi: 10.1039/C1FD00079A
[12]
29 Xu Z. ; Huang C. ; Wang L. ; Pan X. ; Qin L. ; Guo X. ; Zhang G. Ind. Eng. Chem. Res 2015, 54, 4593. doi: 10.1021/acs.iecr.5b00335
[13]
30 Mohapatra S. K. ; Banerjee S. ; Misra M. Nanotechnology 2008, 19, 315601. doi: 10.1088/0957-4484/19/31/315601
[14]
31 Oliveira H. S. ; Oliveira L. C. A. ; Pereira M. C. ; Ardisson J. D. ; Souza P. P. ; Patricio P. O. ; Moura F. C. C. New J.Chem 2015, 39, 3051. doi: 10.1039/C4NJ02063D
[15]
32 Hwang H. K. ; Seo J. W. ; Seo W. S. ; Lim Y. S. ; Park K. Int. J.Energy Res 2014, 38, 241. doi: 10.1002/er.v38.2
[16]
33 Wang M. ; Wang L. A. ; Zhou L. N. ; Zhang W. J. J. Chin. Ceram. Soc 2009, 37, 203.
[17]
38 Zhang, J. W.; Kong, D. S.; Zhang, H.; Du, D. D.; Wang, N.; Feng, Y. Y.; Li, W. J. J. Solid State Electrochem. 2015, accepted. doi: 10.1007/s10008-015-2948-y
[18]
39 Kong D. S. Langmuir 2010, 26, 4880. doi: 10.1021/la9036869
[19]
49 Bonanos, N.; Steele, B. C. H.; Butler, E. P.; MacDonald, J. R.; Johnson, W. B.; Worrell, W. L.; MacDonald, D. D.; McKubre, M. C. H.; Barsoukov, E.; Conway, B. E.; Wagner, N. Applications of Impedance Spectroscopy. In Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed.; Barsoukov, E., MacDonald, J. R. Eds.; John Wiley & Sons, Inc.: New Jersey, 2005; pp 205-537.
[20]
55 Wang M. ; Luan H. Y. ; Yu P. ; Che Y. S. ; Niu C. ; Dong D. Chin. J.Nonferrous Metals 2013, 23, 2243. doi: 10.1016/S1003-6326(13)62724-7
4 Chen X. ; Shen S. ; Guo L. ; Mao S. S. Chem. Rev 2010, 110, 6503. doi: 10.1021/cr1001645
[23]
5 Zhou W. ; Xie Q. ; Lian S. Prog. Chem 2013, 25, 1989.
[24]
周文理; 谢青季; 廉世勋. 化学进展, 2013, 25, 1989.
[25]
6 Diab M. ; Mokari T. Inorg. Chem 2014, 53, 2304.
[26]
19 Shen S. ; Zhou J. ; Dong C. L. ; Hu Y. ; Tseng E. N. ; Guo P. ; Guo L. ; Mao S. S. Sci. Rep 2014, 4, 6627. doi: 10.1038/srep06627
[27]
22 Augustynski J. ; Alexander B. D. ; Solarska ; R Top. Curr. Chem 2011, 303, 1. doi: 10.1007/978-3-642-22294-8
[28]
23 Varshney D. ; Yogi A. J. JMol. Struct 2011, 995, 157. doi: 10.1016/j.molstruc.2011.04.011
[29]
24 Martis V. ; Oldman R. ; Anderson R. ; Fowles M. ; Hyde T. ; Smith R. ; Nikitenko S. ; Bras W. ; Sankar G. Phys. Chem. Chem. Phys 2013, 15, 168. doi: 10.1039/C2CP43307A
[30]
28 Huang Y. C. ; Zhao Z. F. ; Li S. X. ; D J. ; Zheng H. J. Chin. J.Inorg. Chem 2015, 31, 133.
[31]
王敏; 王里奥; 周丽娜; 张文杰. 硅酸盐学报, 2009, 37, 203.
[32]
34 Zhang G. Q. ; Zhang X. ; Lin T. ; Gong T. ; Qi M. Chin. Chem. Lett 2012, 23, 145. doi: 10.1016/j.cclet.2011.10.015
[33]
35 Zhang G. Q. ; Zhang X. ; Qi M. ; Lin T. ; Gong T. Chin. J.Catal 2012, 33, 870.
[34]
张贵泉; 张昕; 祁敏; 林涛; 龚婷. 催化学报, 2012, 33, 870.
[35]
36 Kong D. S. ; Wei Y. J. ; Li X. X. ; Zhang Y. ; Feng Y. Y. ; Li W. J. J. Electrochem. Soc 2014, 161, H144.
[36]
37 Kong D. S. ; Zhang X. D. ; Wang J. ; Wang C. ; Zhao X. ; Feng Y. Y. ; Li W. J. J. Solid State Electrochem 2013, 17, 69. doi: 10.1007/s10008-012-1854-9
[37]
41 Du D. D. ; Li W.J. ; Chen S. S. ; Yan T. J. ; You J. M. ; Kong D. S. New J.Chem 2015, 39, 3129.
[38]
42 Li W. J. ; Kong D. S. ; Cui X. L. ; Du D. D. ; Yan T. J. ; You J. M. Mater. Res. Bull 2014, 51, 69. doi: 10.1016/j.materresbull.2013.12.007
58 Liang X. ; Zhu S. ; Zhong Y. ; Zhu J. ; Yuan P. ; He H. ; Zhang J. Appl. Catal. B 2010, 97, 151. doi: 10.1016/j.apcatb.2010.03.035
[49]
59 Kaneti Y. V. ; Zhang Z. ; Yue J. ; Jiang X. ; Yu A. J.Nanopart. Res 2013, 15, 1948. doi: 10.1007/s11051-013-1948-z
[50]
1 Yang X. ; Liu R. ; He Y. ; Thorne J. ; Zheng Z. ; Wang D. Nano Res 2015, 8, 56. doi: 10.1007/s12274-014-0645-2
[51]
2 van de Krol, R.; Gr?tzel, M. Introduction, Principles of Photoelectrochemical Cells. In Photoelectrochemical Hydrogen Production; van de Krol, R., Gr?tzel, M. Eds.; Springer Science +Business Media: New York, 2012; pp 3-67.
[52]
13 Kumar P. ; Sharma P. ; Shrivastav R. ; Dass S. ; Satsangi V. R. Int. J.Hydrog. Energy 2011, 36 2011, 36, 2777. doi: 10.1016/j.ijhydene.2010.11.107
[53]
14 Zhang X. ; Li H. ; Wang S. ; Fan F. R. F. ; Bard A. J. J. Phys. Chem. C 2014, 118, 16842. doi: 10.1021/jp500395a
[54]
25 Sun L. ; Wu W. ; Yang S. ; Zhou J. ; Hong M. ; Xiao X. ; Ren F. ; Jiang C. ACS Appl. Mater. Interfaces 2014, 6, 1113. doi: 10.1021/am404700h
[55]
26 Zhou W. ; Li T. ; Wang J. ; Qu Y. ; Pan K. ; Xie Y. ; Tian G. ; Wang L. ; Ren Z. ; Jiang B. ; Fu H. Nano Res 2014, 7, 731. doi: 10.1007/s12274-014-0434-y
[56]
27 Jana S. ; Mondal A. ACS Appl. Mater. Interfaces 2014, 6, 15832. doi: 10.1021/am5030879
[57]
46 Boudjemaa A. ; Boumaza S. ; Trari M. ; Bouarab R. ; Bouguelia A. Int. J.Hydrog. Energy 2009, 34, 4268. doi: 10.1016/j.ijhydene.2009.03.044
[58]
51 Klahr B. ; Gimenez S. ; Fabregat-Santiago F. ; Hamann T. ; Bisquertm J. J. Am. Chem. Soc 2012, 134, 4294. doi: 10.1021/ja210755h
[59]
52 Bertoluzzi L. ; Bisquert J. J.Phys. Chem. Lett 2012, 3, 2517. doi: 10.1021/jz3010909
[60]
53 Rao N. S. ; Palanna O. G. Bull. Mater. Sci 1995, 18, 229. doi: 10.1007/BF02749660
[61]
54 Li A. T. ; Cao L. Y. ; Huang J. F. ; Huang Y. C. ; Wu J. P. J.Synth. Cryst 2012, 41, 1227.
[62]
3 Valdés A. ; Brillet J. ; Gr?tzel M. ; Gudmundsdóttir H. ; Hansen H. A. ; Jónsson H. ; Klüpfel P. ; Kroes G. J. ; Le Formal F. ; Man I. C. ; Martins R. S. ; N?rskov J. K. ; Rossmeisl J. ; Sivula K. ; Vojvodic A. ; Z?ch M. Phys. Chem. Chem. Phys 2012, 14, 49. doi: 10.1039/C1CP23212F
[63]
17 Barroso M. ; Cowan A. J. ; Pendlebury S. R. ; Gr?tzel M. ; Klug D. R. ; Durrant J. R. J.Am. Chem. Soc 2011, 133, 14868. doi: 10.1021/ja205325v
[64]
18 Klahr B. ; Gimenez S. ; Fabregat-Santiago F. ; Bisquert J. ; Hamann T. W. J.Am. Chem. Soc 2012, 134, 16693. doi: 10.1021/ja306427f
[65]
21 Sun W. ; Meng Q. ; Jing L. ; Liu D. ; Cao Y. J.Phys. Chem. C 2013, 117, 1358. doi: 10.1021/jp309599d
[66]
黄益操; 赵浙菲; 李世雄; 邸婧; 郑华均. 无机化学学报, 2015, 31, 133.
[67]
40 Li W. J. ; Du D. D. ; Yan T. J. ; Kong D. S. ; You J. M. ; Li D. Z. J. Colloid Interface Sci 2015, 444, 42. doi: 10.1016/j.jcis.2014.12.052
[68]
47 de Tacconi N. R. ; Boyles C. A. ; Rajeshwar K. Langmuir 2000, 16, 5665. doi: 10.1021/la000037x
[69]
48 Radecka M. ; Wierzbicka M. ; Komornicki S. ; Rekas M. Phys. B 2004, 348, 160. doi: 10.1016/j.physb.2003.11.086