全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201604261

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了水系电解液中Li+、Zn2+和Mn2+阳离子对具有不同晶型结构和形貌的MnO2正极电化学性能的影响,探讨其储能机理。结果表明,在不含Mn(II)离子的水溶液中,MnO2电极所表现的电化学性能趋同,容量低,衰减快。含有Zn2+离子的水溶液中,MnO2电极因二价锌离子的嵌入-脱出,容量明显提升,但衰减严重。当溶液中同时含有Zn2+、Mn2+离子时,基于Mn2+和Zn2+离子之间的协同作用和Mn2+离子氧化/还原反应过程的作用,有效抑制MnO2颗粒的聚集和结构塌陷,削弱碱式硫酸锌杂质不利的影响,保持了锌离子在MnO2电极中嵌入-脱出的高容量特性(200 mAh·g-1,电流密度:100 mA·g-1),及良好的循环稳定性。
The effect of Li+, Zn2+, and Mn2+ ions in aqueous solution on the electrochemical performance of the MnO2 cathode characterized by different crystal structures and morphologies was investigated. The energy storage mechanism of MnO2 in the mixed solution was probed. The results show that in aqueous solution without Mn2+ ions, various MnO2 electrodes exhibit similar electrochemical performance with low capacity and severe attenuation. In an aqueous solution with Zn2+ ions, the capacity of MnO2 electrodes is enhanced, which can be attributed to insertion/extraction of zinc ions. However, the decay of the capacity is drastic. When aqueous solutions containing Mn2+ and Zn2+ ions are used, particle aggregation and crystal structure collapse of MnO2 are effectively prevented owing to the synergistic effect of zinc and manganese ions and the redox reaction process of Mn2+ ions. The negative influence of the ZnSO4·3Zn(OH)2 impurity is also weakened. As a result, the high capacity of MnO2 electrodes resulting from insertion/extraction of zinc ions is maintained (~200 mAh·g-1 at 100 mA·g-1) with excellent cycling stability

References

[1]  7 Xu, C. J.; Chen, Y. Y.; Shi, S.; Kang, F. Y. Zinc IonRechargeable Battery and Manufacturing Method Thereof. CNPatent 104272523. A, 2015-01-07.
[2]  3 Machefaux E. ; Brousse T. ; Bélanger D. ; Guyomard D. Journal of Power Sources 2007, 165, 651. doi: 10.1016/j.jpowsour.2006.10.060
[3]  2 Tang W. ; Zhu Y. S. ; Hou Y. Y. ; Liu L. L. ; Wu Y. P. ; Loh K.P. ; Zhang H. P. ; Zhu K. Energy & Environmental Science 2013, 6, 2093. doi: 10.1039/c3ee24249h
[4]  5 Wei C. G. ; Xu C. J. ; Li B. H. ; Du H. D. ; Kang F. Y. Journal of Physics and Chemistry of Solids 2012, 73, 1487. doi: 10.1016/j.jpcs.2011.11.038
[5]  6 Xu D.W. ; Li B. H. ; Wei C. G. ; He Y. B. ; Du H. D. ; Chu X.D. ; Qin X. Y. ; Yang Q. H. ; Kang F. Y. Electrochimica Acta 2014, 133, 254. doi: 10.1016/j.electacta.2014.04.001
[6]  徐成俊,陈彦伊,史珊,康飞宇,一种锌离子可充电电池及其制造方法:中国, CN10 4272523. A.2015-01-07.
[7]  8 Alfaruqi M. H. ; Gim J. ; Kim S. ; Song J. ; Jo J. ; Kim S. ; Mathew V. ; Kim J. Journal of Power Sources 2015, 288, 320. doi: 10.1016/j.jpowsour.2015.04.140
[8]  9 Alfaruqi M. H. ; Mathew V. ; Gim J. ; Kim S. ; Song J. J. ; Baboo J. P. ; Choi S. H. ; Kim J. Chem. Mater. 2015, 27, 3609. doi: 10.1021/cm504717p
[9]  10 Wei, C. G. Manganese Dioxide Tunnel Regulation and Electrochemical Properties of Ion Storage. Ph. D. Dissertation, Tsinghua University, Beijing, 2013.
[10]  魏春光.二氧化锰的隧道调控和电化学离子存储性能研究[D].北京:清华大学, 2013.
[11]  1 Zhao Y. ; Ding Y. ; Li Y. T. ; Peng L. L. ; Byon H. R. ; Goodenough J. B. ; Yu G. H. Chem. Soc. Rev. 2015, 44, 7968. doi: 10.1039/C5CS00289C
[12]  4 Xu C. J. ; Li B. H. ; Du H. D. ; Kang F. Y. Angew. Chem. Int. Edit. 2012, 51, 933. doi: 10.1002/anie.201106307
[13]  11 Zhai D. Y. ; Li B. H. ; Xu C. J. ; Du H. D. ; He Y. B. ; Wei C.G. ; Kang F. Y. Journal of Power Sources 2011, 196, 7860. doi: 10.1016/j.jpowsour.2011.05.015
[14]  12 Xu C. J. ; Du H. D. ; Li B. H. ; Kang F. Y. Journal of the Electrochemical Society 2009, 156 (1), A73. doi: 10.1149/1.3021013
[15]  13 Toupin M. ; Brousse T. ; Bélanger D. Chem. Mater. 2004, 16, 3184. doi: 10.1021/cm049649j

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133