主要考察了辛基(苯基)-N, N-二异丁基胺甲酰基甲基氧化膦(CMPO)在1-乙基-3-甲基咪唑双三氟甲基磺酰胺酸盐([C2mim][NTf2])中的γ辐解行为,同时考察辐射对CMPO/[C2mim][NTf2]萃取能力的影响。通过超高效液相色谱-四极杆飞行时间质谱联用仪(UPLC/Q-TOF-MS)进行定量分析、辐解产物认定以及产物半定量分析。CMPO/正十二烷作为对比条件进行了相同研究。结果表明:CMPO在[C2mim][NTf2]中的辐解率低于其在正十二烷中,并且辐解路径不同。在正十二烷体系中,CMPO主要发生C―P、C―N键的断链,而在离子液体体系中CMPO主要发生异丁基脱除反应,并与[C2mim]+·、·CF3等离子液体产生的自由基发生取代反应。综合辐解研究结果,我们提出CMPO/[C2mim][NTf2]的辐解路径,这加深了CMPO在离子液体中辐解机理的认识。最后,通过萃取实验发现,当硝酸浓度为0.01 mol·L-1,辐照剂量为800 kGy时,CMPO/[C2mim][NTf2]对Eu3+的萃取率依旧达到99%以上。 Theγ-radiolysis of octylphenyl-(N, N-(diisobutyl)carbamoyl-methyl) phosphine oxide (CMPO) in 1-ethyl-3-methylimidazoliumbis (trifluoromethylsulfonyl) imide ([C2mim][NTf2]) was studied. The effect of radiation on CMPO/[C2mim][NTf2] extractability was also investigated. Quantitative analysis of CMPO in irradiated CMPO/ [C2mim][NTf2] systems, identification and semi-quantitative analysis of the radiolytic products were performed using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS). For comparison, CMPO/dodecane was also studied under the same conditions. The radiolysis ratio of CMPO in [C2mim][NTf2] was found to be lower than in dodecane, because of the different radiolysis pathways. The radiolysis pathway of CMPO in molecular solvent was mainly chain scission of C―P and C―N, while that in [C2mim][NTf2] was the elimination of isobutyl, as well as substitution reactions with [C2mim]+· and ·CF3 generated from solvent [C2mim][NTf2]. Based on the radiolysis study, we propose a radiolysis pathway for CMPO/[C2mim] [NTf2], providing a deeper understanding of the radiolytic mechanism of CMPO in ionic liquids. Finally, the Eu3+ partitioning of CMPO/[C2mim][NTf2] from 0.01 mol·L-1 HNO3 was higher than 99% at 800 kGy
References
[1]
2 Wei Y. Z Prog. Chem 2011, 23 (7), 1272.
[2]
韦悦周. 化学进展, 2011, 23 (7), 1272.
[3]
3 Nash K. L. ; Gatrone R. C. ; Clark G. A. ; Horwitz P. G. R Sep. Sci. Technol 1988, 23 (12), 1355. doi: 10.1080/01496398808075635
[4]
4 Yuan W. J. ; Ao Y. Y. ; Zhao L. ; Zhai M. L. ; Peng J. ; Li J. Q RSC Adv 2014, 4 (93), 51330. doi: 10.1039/C4RA08308C
6 Yuan L. Y. ; Peng J. ; Xu L. ; Zhai M. L. ; Li J. Q. ; Wei G. S. J. Phys. Chem. B 2009, 113 (26), 8948. doi: 10.1021/jp9016079
[7]
7 Baba Y. ; Kubota F. ; Kamiya N. ; Goto M. J Chem. Eng. Jpn 2011, 44 (10), 679. doi: 10.1252/jcej.10we279
[8]
11 Shkrob I. A. ; Chemerisov S. D. ; Wishart J. F. J. Phys. Chem. B 2007, 111 (40), 11786. doi: 10.1021/jp073619x
[9]
14 Le R. G. ; Lamouroux C. ; Dauvois V. ; Dannoux A. ; Legand S. ; Durand D. ; Moisy P. ; Moutiers G Dalton Trans 2009, No.31, 6175. doi: 10.1039/B903005K
[10]
16 Dietz M. L. ; Dzielawa J. A. ; Laszak I. ; Young B. A. ; Jensen M. P Green Chem 2003, 5 (6), 682. doi: 10.1039/B310507P
[11]
1 Groenewold G. S. ; Elias G. ; Mincher B. J. ; Mezyk S. P. ; Laverne J. A Talanta 2012, 99 (18), 909. doi: 10.1016/j.talanta.2012.07.056
[12]
5 Wang S. J. ; Ao Y. Y. ; Zhou H. Y. ; Yuan L. Y. ; Peng J. ; Zhai M. L Acta Phys.-Chim. Sin 2014, 30 (9), 1597. doi: 10.3866/PKU.WHXB201406271
[13]
8 Ao Y. Y. ; Peng J. ; Yuan L. Y. ; Cui Z. P. ; Cheng L. ; Li J. Q. ; Zhai M. L Dalton Trans 2013, 42 (12), 4299. doi: 10.1039/C2DT32418K
[14]
9 Yuan W. J. ; Ao Y. Y. ; Zhao L. ; Wei Y. Z. ; Zhai M. L. ; Li J Q. Nucl. Sci. Technol 2015, 26 (1), S10306. doi: 10.13538/j.1001-8042/nst.26.S10306
10 Ao Y. Y. ; Zhou H. Y. ; Yuan W. J. ; Wang S. J. ; Peng J. ; Zhai M. L. ; Wang J. Y. ; Zhao Z. Q. ; Zhao L. ; Wei Y. Z Dalton Trans 2014, 43 (14), 5580. doi: 10.1039/C3DT53297F
[17]
12 Shkrob I. A. ; Marin T.W. ; Chemerisov S. D. ; Wishart J. F. J. Phys. Chem. B 2011, 115 (37), 10927. doi: 10.1021/jp206579j
[18]
13 Shkrob I. A. J. Phys. Chem. B 2010, 114 (1), 368. doi: 10.1021/jp9081678
[19]
15 Yuan L. ; Peng J. ; Xu L. ; Zhai M. ; Li J. ; Wei G. J. Phys. Chem. B 2009, 113 (26), 8948. doi: 10.1021/jp9016079
[20]
17 Visser A. E. ; Swatloski R. P. ; Reichert W. M. ; Griffin S. T. ; Rogers R. D Ind. Eng. Chem. Res 2000, 39 (10), 3596. doi: 10.1021/ie000426m