采用静电纺丝法成功制备了Y掺杂的ZnO纳米纤维.并通过X射线衍射(XRD),扫描电子显微镜(SEM),能量色散X射线(EDX),透射电子显微镜(TEM)以及热重差热分析(TG-DTA)等手段对样品的结构和形貌进行了表征分析.同时用纯的ZnO和Y掺杂的ZnO纳米纤维制备了传感器,对浓度为(1-200)×10-6 (体积分数)丙酮的气敏特性进行了测试分析.测试结果表明,可以通过简单控制纳米纤维中Y的含量,来微调该传感器的气敏特性.同时也发现通过Y掺杂, ZnO纳米纤维对丙酮的气敏特性有所改善,表现出很高的响应.纯ZnO和Y掺杂ZnO制成的传感器对几种潜在干扰气体表现出良好的选择性,比如氨气、苯、甲醛、甲苯以及甲醇.本文最后也讨论了该传感器的气敏作用机理. Y-doped ZnO nanofibers were synthesized by an electrospinning method. The structure and morphology of the samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), and thermogravimetric/differential thermal analysis (TG-DTA). The sensitivity of the pure and Y-doped ZnO nanofibers towards acetone from 1×10-6 to 200×10-6 (volume fraction) was investigated. Fine tuning of the sensing ability of the ZnO nanofibres was possible by controlling the amount of Y loaded in the nanofibers. The ZnO nanofibers doped with Y exhibited very high responses towards acetone. Both the pure and Y-doped ZnO sensors showed selectivity towards several potential interferent gases, including ammonia, benzene, formaldehyde, toluene, and methanol. The sensing mechanism is discussed
References
[1]
3 Zhang Y. ; Xu J. ; Xiang Q. ; Li H. ; Pan Q. ; Xu P. J.Phys. Chem. C 2009, 113, 3430. doi: 10.1021/jp8092258
[2]
15 K?l?n? N. ; ?ztürk S. ; Arda L. ; Alt?ndal A. ; ?ztürk Z. Z. J. Alloy. Compd 2012, 536, 138. doi: 10.1016/j.jallcom.2012.04.104
[3]
16 Greiner A. ; Wendorff J. H. Angew. Chem 2007, 46, 5670. doi: 10.1002/anie.200604646
[4]
17 Zheng Y. ; Wang J. ; Yao P. Sens. Actuators B 2011, 156, 723. doi: 10.1016/j.snb.2011.02.026
[5]
20 Liang Y. X. ; Chen Y. J. ; Wang T. H. Appl. Phys. Lett 2004, 85, 666. doi: 10.1063/1.1775879
[6]
21 Yao P. J. ; Wang J. ; Chu W. L. ; Hao Y. W. J. Mater. Sci 2012, 48, 441. doi: 10.1007/s10853-012-6758-7
[7]
32 Wang P. ; He J. ; Guo L. ; Yang Y. ; Zheng S. Mater. Sci. Semicond. Process 2015, 36, 36. doi: 10.1016/j.mssp.2015.03.022
[8]
33 Wan Q. ; Li Q. H. ; Chen Y. J. ; Wang T. H. ; He X. L. ; Li J. P. ; Lin C. L. Appl. Phys. Lett 2004, 84, 3654. doi: 10.1063/1.1738932
[9]
35 Takata M. ; Tsubone D. ; YanagidaH. J. Am. Ceram. Soc 1976, 59, 4. doi: 10.1111/j.1151-2916.1976.tb09374.x
[10]
37 Liu L. ; Li S. ; Zhuang J. ; Wang L. ; Zhang J. ; Li H. ; Liu Z. ; Han Y. ; Jiang X. ; Zhang P. Sens. Actuators B 2011, 155, 782. doi: 10.1016/j.snb.2011.01.047
[11]
25 Yogamalar R. ; Venkateswaran P. S. ; Benzigar M. R. ; Ariga K. ; Vinu A. ; Bose A. C. J. Nanosci. Nanotechnol 2012, 12, 75. doi: 10.1166/jnn.2012.5760
[12]
26 Guo W. ; Liu T. ; Sun R. ; Chen Y. ; Zeng W. ; Wang Z. Sens. Actuators B 2013, 178, 53. doi: 10.1016/j.snb.2012.12.073
[13]
27 Zhang C. ; Chen P. ; Hu W. Chem. Soc. Rev 2015, 44, 2087. doi: 10.1039/c4cs00326h
[14]
28 Yamazoe N. ; Fuchigami J. ; Kishikawa M. ; Seiyama T. Surf. Sci 1979, 86, 335. doi: 10.1016/0039-6028(79)90411-4
[15]
34 Shimizu Y. ; Kai S. ; Takao Y. ; Hyodo T. ; Egashira M. Sens. Actuators B 2000, 65, 349.
[16]
1 Huang M. H. ; Mao S. ; Feick H. ; Yan H. ; Wu Y. ; Kind H. ; Weber E. ; Russo R. ; Yang P. Science 2001, 292, 1897. doi: 10.1126/science.1060367
[17]
2 Choi S. H. ; Ankonina G. ; Youn D. Y. ; Oh S. G. ; Hong J. M. ; Rothschild A. ; Kim I. D. ACS Nano 2009, 3, 2623. doi: 10.1021/nn900126k
[18]
18 Wang J. ; Zou B. ; Ruan S. ; Zhao J. ; Chen Q. ; Wu F. Mater. Lett 2009, 63, 1750. doi: 10.1016/j.matlet.2009.05.046
[19]
19 Cheng L. ; Ma S. Y. ; Li X. B. ; Luo J. ; Li W. Q. ; Li F. M. ; Mao Y. Z. ; Wang T. T. ; Li Y. F. Sens. Actuators B 2014, 200, 181. doi: 10.1016/j.snb.2014.04.063
[20]
22 Abdelrazek E. M. ; Elashmawi I. S. ; Labeeb S. Phys. B (Amsterdam, Neth.) 2010, 405, 2021. doi: 10.1016/j.physb.2010.01.095
[21]
23 Zheng J. H. ; Song J. L. ; Jiang Q. ; Lian J. S. Appl. Surf. Sci 2012, 258, 6735. doi: 10.1016/j.apsusc.2012.03.010
[22]
24 Heo S. ; Sharma S. K. ; Lee S. ; Lee Y. ; Kim C. ; Lee B. ; Lee H. ; Kim D. Y. Thin Solid Films 2014, 558, 27. doi: 10.1016/j.tsf.2014.02.025
[23]
29 Herrán J. ; Fernández-González O. ; Castro-Hurtado I. ; Romero T. ; GMandayo G. ; Casta?o E. Sens. Actuators B 2010, 149, 368. doi: 10.1016/j.snb.2010.06.050
[24]
30 Ghasdi M. ; Alamdari H. Sens. Actuators B 2010, 148, 478. doi: 10.1016/j.snb.2010.05.056
[25]
31 Zhao M. ; Wang X. ; Ning L. ; Jia J. ; Li X. ; Cao L. Sens. Actuators B 2011, 156, 588. doi: 10.1016/j.snb.2011.01.070
[26]
4 Bal A. K. ; Singh A. ; Bedi R. K. Appl. Phys. A: Mater. Sci. Process 2010, 103, 497. doi: 10.1007/s00339-010-6021-5
[27]
5 Youn S. K. ; Ramgir N. ; Wang C. ; Subannajui K. ; Cimalla V. ; Zacharias M. J.Phys. Chem. C 2010, 114, 10092. doi: 10.1021/jp100446r
[28]
6 YamazoeN. Sens. Actuators B 1991, 5, 7. doi: 10.1016/0925-4005(91)80213-4
[29]
7 Tang W. ; Wang J. ; Yao P. J. ; Du H. Y. ; Sun Y. H. Acta Phys. -Chim. Sin 2014, 30, 781. doi: 10.3866/PKU.WHXB201402191