利用原子转移自由基聚合(ATRP)方法,由单体2-(2-甲氧基乙氧基)甲基丙烯酸乙酯(MEO2MA)和寡聚(乙二醇)甲基醚甲基丙烯酸酯(OEGMA, Mn = 500 g·mol-1)合成了无规共聚物P(MEO2MA-co-OEGMA).并采用动态光散射(DLS)、紫外光谱及透射电子显微镜(TEM)等技术考察聚合物在水溶液中的温度响应性聚集行为,获得其在水溶液中的最低临界溶解温度(LCST)及其随组成的变化规律.结果表明,该聚合物具有良好且可逆的温度响应行为,这主要归因于聚合物与水分子之间氢键作用,及其分子本身疏水作用之间为了保持一种微妙的动态平衡而自发对聚集形态进行的“自我调整”,从而达到新的热力学平衡状态的结果.该聚合物的LCST与聚合物中单体OEGMA所占的摩尔比例呈线性关系,可以通过改变单体的摩尔配比实现对聚合物LCST的调控. Random copolymers of 2-(2-methoxyethoxy)ethyl methacrylate (MEO2MA) and oligo(ethylene glycol) methacrylate (OEGMA, Mn = 500 g·mol-1) were synthesized by atom transfer radical polymerization (ATRP). Thermally induced aggregation of the co-polymers P(MEO2MA-co-OEGMA) in aqueous solutions was investigated with dynamic light scattering (DLS), UV-Vis absorption, and transmission electron microscopy (TEM). In addition, the lower critical solution temperature (LCST) in aqueous solutions of P(MEO2MA-co-OEGMA), and its change with respect to the composition of the copolymer, were obtained. The results indicate that the copolymers have an appreciably reversible thermal responsivity that can be attributed to a delicate balance between hydrogen bonds between the copolymers and water molecules and hydrophobic interactions of polymer segments. If the balance is broken, the polymers attain a new thermodynamic equilibrium by spontaneously changing the extent of aggregation. The LCST correlates linearly with the mole fraction of OEGMA units in the copolymer, and can be adjusted by changing the mole ratio of the two monomers
References
[1]
6 Cheng Y. ; Xia M. ; Meng Z. ; Wu Y. ; Ren H. ; Jiang Y. ; Liu Y. ; Zhou Z. ; Jiang X. ; Zhu M. Acta Polym. Sin 2014, 10, 1342. doi: 10.10.1007/s00396-014-3262-4
[2]
8 Kitano H. ; Hirabayashi T. ; Gemmei-Ide M. ; Kyogoku M. Macromol. Chem. Phys 2004, 205, 1651. doi: 10.1002/macp.20040013s
[3]
9 Ward M. A. ; Georgiou T. K. Soft Matter 2012, 8, 2737. doi: 10.1039/c2sm06743a
[4]
10 Watson B. M. ; Kasper F. K. ; Engel P. S. ; Mikos A. G. Biomacromolecules 2014, 15, 1788. doi: 10.1021/bm500175e
[5]
12 Feng Q. ; Li F. ; Yan Q. Z. ; Zhu Y. C. ; Ge C. C. Colloid Polym. Sci 2010, 288, 915. doi: 10.1007/s00396-010-2224-8
[6]
15 Kujawa P. ; Segui F. ; Shaban S. ; Diab C. ; Okada Y. ; Tanaka F. ; Winnik F. M. Macromolecules 2006, 39, 341. doi: 10.1021/ma051876z
[7]
23 Li Q. S. ; Liu Y. ; Ji S. ; Zhou Z. ; Li Q. Colloid Polym. Sci 2014, 292, 2993. doi: 10.1007/s00396-014-3262-4
[8]
25 Matyjaszewski, K.; Davis, T. P. Handbook of Radical Polymerization; John Wiley & Sons. Inc.: Hoboken, NJ, 2003; pp 895-900.
[9]
27 Lutz J. F. ; Weichenhan K. ; Akdemir ?. ; Hoth A. Macromolecules 2007, 40, 2503. doi: 10.1021/ma062925q
[10]
28 Ji W. X. Fine and Specialty Chemicals 2010, 18 (8), 58.
[11]
31 Bhargava P. ; Tu Y. F. ; Zheng J. X. ; Xiong H. M. ; Quirk R. P. ; Cheng S. Z. D. J.Am. Chem. Soc 2007, 129, 1113. doi: 10.1021/ja0653019
[12]
32 Israelachvili Proc. Natl. Acad. Sci. U. S. A 1997, 94, 8378. doi: 10.1073/pnas.94.16.8378
[13]
33 Begum R. ; Matsuura H. J. Chem. Soc. Faraday Trans 1997, 93, 3839. doi: 10.1039/a703436i
36 Mertoglu M. ; Garnier S. ; Laschewsky A. ; Skrabania K. ; Storsberg J. Polymer 2005, 46, 7726. doi: 10.1016/j.polymer.2005.03.101
[16]
1 Gil E. S. ; Hudson S. M. Prog. Polym. Sci 2004, 29, 1173. doi: 10.1016/j.progpolymsci.2004.08.003
[17]
2 Dai S. ; Ravi P. ; Tam K. C. Soft Matter 2009, 5, 2513. doi: 10.1039/6820044k
[18]
7 Ward M. A. ; Georgiou T. K. Polymers 2011, 3, 1215. doi: 10.3390/polym3031215
[19]
11 Schild H. G. Prog. Polym. Sci 1992, 17, 163. doi: 10.1016/0079-6700(92)90023-R
[20]
13 Wang X. ; Wu C. Macromolecules 1999, 32, 4299. doi: 10.1021/ma9902450
[21]
14 Cheng H. ; Shen L. ; Wu C. Macromolecules 2006, 39, 2325. doi: 10.1021/ma052561m
[22]
16 Xia Y. ; Burke N. A. D. ; Stover H. D. H. Macromolecules 2006, 39, 2275. doi: 10.1021/ma0519617
[23]
17 Lutz J. F. J. Polym. Sci. A: Polym. Chem 2008, 46, 3459. doi: 10.1002/pola.22706
[24]
18 Prime K. L. ; Whitesides G. M. J.Am. Chem. Soc 1993, 115, 10714. doi: 10.1021/ja00076a032
[25]
19 Stolnik S. ; Illum L. ; Davis S. S. Adv. Drug Del. Rev 1995, 16, 195. doi: 10.1016/0169-409X(95)00025-3
[26]
20 Ishizone T. ; Seki A. ; Hagiwara M. ; Han S. ; Yokoyama H. ; Oyane A. ; Deffieux A. ; Carlotti S. Macromolecules 2008, 41, 2963. doi: 10.1021/ma702828n
[27]
21 Das S. ; Samanta S. ; Chatterjee D. P. ; Nandi A. K. J.Polym. Sci. A: Polym. Chem 2013, 51, 1417. doi: 10.1002/pola.26514
[28]
22 Dong H. ; Matyjaszewski K. Macromolecules 2010, 43, 4623. doi: 10.1021/ma100570s
[29]
24 Lutz J. F. ; Hoth A. Macromolecules 2006, 39, 893. doi: 10.1021/ma0517042
[30]
26 Wang X.S. ; Armes S. P. Macromolecules 2000, 33, 6640. doi: 10.1021/ma000671h
[31]
计文希. 精细与专用化学品, 2010, 18 (8), 58.
[32]
29 Qiu X. P. ; Kwan C. M. S. ; Wu C. Macromolecules 1997, 30, 6090. doi: 10.1021/ma970484s
[33]
30 Taha M. ; Gupta B. S. ; Khoiroh I. ; Lee M. J. Macromolecules 2011, 44, 8575. doi: 10.1021/ma201790c
[34]
35 Han S. ; Hagiwara M. ; Ishizone T. Macromolecules 2003, 36, 8312. doi: 10.1021/ma0347971
[35]
3 Schmaljohann D. Adv. Drug Delivery Rev 2006, 58, 1655. doi: 10.1016/j.addr.2006.09.020
[36]
4 He C. L. ; Kim S. W. ; Lee D. S. J. Controlled Releas 2008, 127, 189. doi: 10.1016/j.jconrel.2008.01.005
[37]
5 Cunliffe D. ; de las Heras Alarcon C. ; Peters V. S. J. R. ; Alexander C. Langmuir 2003, 19, 2888. doi: 10.1021/la026358l