利用水热法合成了形貌可控的氧化锌(ZnO)微纳材料。利用X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),紫外-可见(UV-Vis)分光光谱和比表面积分析(BET)等技术对所制备的ZnO材料进行了表征。不同酸碱度(pH值)条件下,经过500 ℃退火2 h制备的ZnO均为纤锌矿结构。随着前驱液pH值的增加,所得ZnO从片状晶体变为棒状晶体。片状ZnO主要暴露极性晶面,棒状ZnO主要暴露非极性晶面。从生长角度考虑,在溶液为弱酸性条件下(pH 6.5),溶液中游离的氯离子(Cl-)抑制了ZnO在锌极性面({Zn2+}crystal surface)的生长,水热反应产物为片状Zn5(OH)8Cl2·H2O,退火后得到微孔片状ZnO;当溶液中添加氢氧根(OH-)后,锌离子(Zn2+)被络合为四羟基锌络合离子(Zn(OH)42-),该络离子促进了ZnO在{Zn2+}crystal surface的生长,从而得到棒状晶体。利用上述催化剂,在氙灯照射下进行光催化还原二氧化碳实验,发现极性面较多的片状ZnO具有更高的光催化性能。 ZnO microstructures and nanostructures with controlled-morphology were synthesized by the hydrothermal method. All samples were prepared using precursors at different pH values and then annealed at 500 ℃ for 2 h. The samples were characterized by X-ray diffraction (XRD) patterns, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis), and BET specific surface area measurement. All samples were confirmed by XRD to be wurtzite ZnO. As the pH value of the precursor increased, sheet-like ZnO disappeared and rod-like ZnO was produced. The major surfaces of sheet-like and rod-like ZnO were polar and nonpolar crystal faces, respectively. At pH 6.5, Cl- was adsorbed onto the (002) polar face and inhibited the growth along the polar crystal face ({Zn2+}crystal surface). A microporous sheet ZnO was formed by annealing the obtained sheet-like Zn5(OH)8Cl2·H2O. When OH- was added into the precursor, Zn(OH)42- was generated via coordination with Zn2+, which was adsorbed onto the (002) polar face and promoted growth along the polar crystal face. Rod-like ZnO was thus produced. The obtained ZnO could photocatalytically reduce CO2 under illumination. Sheet-like ZnO exhibited better photocatalytic performance than rod-like ZnO. This may be because the polar crystal face shows better photocatalytic activity than the unpolar crystal face
References
[1]
1 Inoue T. ; Fujishima A. ; Konishi S. ; Honda K Nature 1979, 277 (5698), 637.
[2]
12 Yan S. C. ; Ouyang S. X. ; Gao J. ; Yang M. ; Feng J. Y. ; Fan X. X. ; Wan L. J. ; Li Z. S. ; Ye J. H. ; Zhou Y. ; Zou Z. G Angewandte Chemie International Edition 2010, 49 (36), 6400. doi: 10.1002/anie.201003270
[3]
15 Tang Q. L. ; Luo Q. H The Journal of Physical Chemistry C 2013, 117 (44), 22954. doi: 10.1021/jp407970a
[4]
17 Pacholski C. ; Kornowski A. ; Weller H Angewandte Chemie International Edition 2002, 41 (7), 1188.
[5]
24 Sun X. ; Qiu X. ; Li L. ; Li G Inorganic Chemistry 2008, 47 (10), 4146. doi: 10.1021/ic702348c
[6]
25 Zhang W. X. ; Yanagisawa K Chemistry Letters 2005, 34 (8), 1170. doi: 10.1246/cl.2005.1170
[7]
26 Zhang W. X. ; Yanagisawa K Chemistry of Materials 2007, 19 (9), 2329. doi: 10.1021/cm0626841
[8]
27 Moriya M. ; Yoshikawa K. ; Sakamoto W. ; Yogo T Inorganic Chemistry 2009, 48 (17), 8544. doi: 10.1021/ic900864a
[9]
31 Huang K. J. ; Yan L. ; Xie C. S Materials Review 2010, 24 (6), 7.
[10]
黄开金; 闫里; 谢长生. 材料导报:综述篇, 2010, 24 (6), 7.
[11]
38 Yang J. H. ; Wang J. ; Li X. Y. ; Lang J. H. ; Liu F. Z. ; Yang L. L. ; Zhai H. J. ; Gao M. ; Zhao X. T Journal of Alloys and Compounds 2012, 528, 28. doi: 10.1016/j.jallcom.2012.02.162
[12]
2 Qin G. H. ; Zhang Y. ; Ke X. B. ; Tong X. L. ; Sun Z. ; Liang M. ; Xue S Applied Catalysis B: Environmental 2013, 129, 599.
[13]
3 Hemminger J. C. ; Carr R. ; Somorjai G. A Chemical Physics Letters 1978, 57 (1), 100.
[14]
4 Kohno Y. ; Tanaka T. ; Funabiki T. ; Yoshida S Physical Chemistry Chemical Physics 2000, 2 (11), 2635.
[15]
7 Liu Y. Y. ; Huang B. B. ; Dai Y. ; Zhang X. Y. ; Qin X. Y. ; Jiang M. H. ; Whangbo M. H Catalysis Communications 2009, 11 (3), 210.
[16]
8 Huang Y. ; Fu M. ; He T Acta Phys. -Chim. Sin 2015, 31 (6), 1145. doi: 10.3866/PKU.WHXB201504015
[17]
13 Zheng Y. ; Chen C. ; Zhan Y. ; Lin X. ; Zheng Q. ; Wei K. ; Zhu J. ; Zhu Y Inorganic Chemistry 2007, 46 (16), 6675. doi: 10.1021/ic062394m
[18]
16 Farias S. A. ; Longo E. ; Gargano R. ; Martins J. B Journal of Molecular Modeling 2013, 19 (5), 2069. doi: 10.1007/s00894-012-1636-4
[19]
21 Georgiou P. ; Kolokotronis K. ; Simitzis J Journal of Nano Research 2009, 6, 157. doi: 10.4028/www.scientific.net/JNanoR.6
[20]
29 Liu Y. ; Wang D. ; Peng Q. ; Chu D. ; Liu X. ; Li Y Inorganic Chemistry 2011, 50 (12), 5841. doi: 10.1021/ic2009013
[21]
32 Hu H. F. ; He T Acta Phys. -Chim. Sin 2015, 31 (7), 1421. doi: 10.3866/PKU.WHXB201504221
9 Li P. ; Zhou Y. ; Tu W. ; Liu Q. ; Yan S. ; Zou Z ChemPlusChem 2013, 78 (3), 274.
[39]
10 Li P. ; Zhou Y. ; Tu W. G. ; Wang R. ; Zhang C. F. ; Liu Q. ; Li H. J. ; Li Z. D. ; Dai H. ; Wang J. J. ; Yan S. C. ; Zou Z. G CrystEngComm 2013, 15 (46), 9855.
[40]
11 Chen X. ; Zhou Y. ; Liu Q. ; Li Z. ; Liu J. ; Zou Z ACS Appl. Mater. Interfaces 2012, 4 (7), 3372.
[41]
18 Zhang L. N. ; Yang H. Q. ; Ma J. H. ; Li L. ; Wang X.W. ; Zhang L. H. ; Tian S. ; Wang X. Y Applied Physics A 2010, 100 (4), 1061. doi: 10.1007/s00339-010-5737-6
[42]
19 Cheng B. ; Samulski E. T Chemical Communications 2004, No 8, 986.
[43]
20 Rupasinghe, R.A.T. P. Dissolution and Aggregation of ZincOxide Nanoparticles at Circumneutral pH: a Study of SizeEffects in the Presence and Absence of Citric Acid. M. S.Dissertation, University of Iowa, Iowa City, 2011.
[44]
23 Liu H. X. ; Huang B. B. ; Wang Z. Y. ; Qin X. Y. ; Zhang X.Y. ; Wei J. Y. ; Dai Y. ; Wang P. ; Whangbo M. H Journal of Alloys and Compounds 2010, 507 (1), 326. doi: 10.1016/j.jallcom.2010.07.192