全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 


DOI: 10.3866/PKU.WHXB201705111

Full-Text   Cite this paper   Add to My Lib

Abstract:

以Cu粉和S粉作为CuS前驱体,基于单质法在低温下原位合成了CuS-WO3光催化剂。采用X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、比表面积和紫外-可见漫反射光谱(UV-Vis DRS)对CuS-WO3的晶相、形貌、粒径及光学性质等进行了表征。结果表明,CuS对WO3的晶相结构、粒径及比表面积没有明显影响,但是可以有效提高WO3对可见光的吸收。以降解罗丹明B(RhB)为反应模型,研究了CuS对WO3光催化性能的影响。结果表明,在可见光照射下,CuS-WO3复合材料的光催化活性优于CuS、WO3的光催化活性,且CuS的含量对CuS-WO3光催化活性影响显著,CuS含量为7%(w,质量分数)时,光催化效率最高(91.3%)。进一步结合CuS、WO3的能带位置,荧光光谱(PL)活性物种鉴定试验,提出CuS-WO3复合光催化剂的“直接Z型”光催化机理。直接Z型CuS-WO3复合光催化剂中可以有效抑制电子-空穴的复合。因此,与CuS和WO3相比,CuS-WO3复合光催化剂具有较高的光催化性能。
CuS fabricated by an element-reaction route using copper and sulfur powders was loaded on WO3 in situ at a low temperature. X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller analysis, and UV-visible diffuse reflectance spectra were used to characterize the crystalline phase, morphology, particle size, and optical properties of the CuS-WO3 samples. CuS modification had no obvious influence on the crystalline phase, particle size, and surface area of WO3. However, it led to the enhancement of the utilization of light energy for WO3. CuS-WO3 composites were utilized as photocatalysts for the degradation of Rhodamine B. The CuS-WO3 photocatalysts showed higher photocatalytic activity than pure WO3 or CuS under visible light irradiation. CuS content had a significant influence on the photocatalytic activity of CuS-WO3. CuS-WO3 with 7% (w, mass fraction) CuS content exhibited the highest photocatalytic degradation activity (91.3%). Based on analysis of the band structure of CuS and WO3, photoluminescence results, and active species trapping, a "direct Z-scheme" mechanism for the enhanced photocatalytic activity of CuS-WO3 was proposed. The "direct Z-scheme" results in effective charge separation, leading to increased photocatalytic activity compared to that of CuS and WO3

References

[1]  4 Lu Y. ; Liu G. ; Zhang J. ; Feng Z. ; Li C. ; Li Z. Chin. J. Catal. 2016, 37, 349. doi: 10.1016/S1872-2067(15)61023-3
[2]  6 Jothivenkatachalam K. ; Prabhu S. ; Nithya A. ; Jeganathan K. RSC Adv. 2014, 4, 21221. doi: 10.1039/c4ra01376j
[3]  7 Peng Y. ; Chen Q. ; Wang D. ; Zhou H. Y. ; Xu A. CrystEngComm 2014, 17, 569. doi: 10.1039/C4CE01884B
[4]  8 Xi G. ; Yue B. ; Cao J. ; Ye J. Chem. -Eur. J. 2011, 17, 5145. doi: 10.1002/chem.v17.18
[5]  10 Kong L. ; Jiang Z. ; Lai H. H. ; Nicholls R. J. ; Xiao T. ; Jones M. O. ; Edwards P. P. J. Catal. 2012, 293, 116. doi: 10.1016/j.jcat.2012.06.011
[6]  20 Eda S. ; Moriyasu K. ; Fujishima M. ; Nomura S. ; Tada H. RSC Adv. 2013, 3, 10414. doi: 10.1039/c3ra40947c
[7]  21 Zhang J. ; Yu J. ; Zhang Y. ; Li Q. ; Gong J. R. Nano Lett. 2011, 11, 4774. doi: 10.1021/nl202587b
[8]  25 Lu G. ; Li X. ; Qu Z. ; Zhao Q. ; Li H. ; Shen Y. ; Chen G. Chem. Eng. J. 2010, 159, 242. doi: 10.1016/j.cej.2010.02.024
[9]  30 Huang Q. ; Wang L. ; Wang M. ; Nan J. J. Alloys Compd. 2011, 509, 9901. doi: 10.1016/j.jallcom.2011.07.082
[10]  31 Liang N. ; Wang M. ; Jin L. ; Huang S. ; Chen W. ; Xu M. ; He Q. ; Zai J. ; Fang N. ; Qian X. ACS Appl. Mater. Interfaces 2014, 6, 11698. doi: 10.1021/am502481z
[11]  28 Mondal C. ; Singh A. ; Sahoo R. ; Sasmal A. K. ; Negishi Y. ; Pal T. New J. Chem. 2015, 39, 5628. doi: 10.1039/C5NJ00128E
[12]  29 Chen S. ; Hu Y. ; Meng S. ; Fu X. Appl. Catal. B: Environ. 2014, 150-151, 564. doi: 10.1016/j.apcatb.2013.12.053
[13]  3 Thibert A. ; Frame F. A. ; Busby E. ; Holmes M. A. ; Osterloh F. E. ; Larsen D. S. J. Phys. Chem. Lett. 2016, 2, 2688. doi: 10.1021/jz2013193
[14]  12 He G. H. ; He G. L. ; Li A. J. ; Li X. ; Wang X. J. ; Fang Y. P. ; Xu Y. H. J. Mol. Catal. A: Chem. 2014, 385, 106. doi: 10.1016/j.molcata.2014.01.022
[15]  13 Aslam I. ; Cao C. ; Khan W. S. ; Tanvir M. ; Tahir M. ; Abid M. ; Idrees F. ; Butt F. K. ; Ali Z. ; Mahmood N. New J. Chem. 2014, 38, 5462. doi: 10.1039/c4nj01370k
[16]  14 Theerthagiri J. ; Senthil R. A. ; Malathi A. ; Selvi A. ; Madhavan J. ; Ashokkumar M. RSC Adv. 2015, 5, 52718. doi: 10.1039/c5ra06512g
[17]  15 Chen S. ; Ji L. ; Tang W. ; Fu X. Dalton Trans. 2013, 42, 10759. doi: 10.1039/c3dt50699a
[18]  27 Zhang X. ; Zhang L. ; Xie T. ; Wang D. J. Phys. Chem. C 2009, 113, 7371. doi: 10.1021/jp900812d
[19]  32 Zong X. ; Han J. ; Ma G. ; Yan H. ; Wu G. ; Li C. J. Phys. Chem. C 2011, 115, 12202. doi: 10.1021/jp2006777
[20]  1 Meng Y. S. ; An Y. ; Guo Q. ; Ge M. Acta Phys. -Chim. Sin. 2016, 32, 2077. doi: 10.3866/PKU.WHXB20160508
[21]  孟英爽; 安逸; 郭谦; 葛明. 物理化学学报, 2016, 32, 2077. doi: 10.3866/PKU.WHXB20160508
[22]  2 Hao X. Q. ; Yang H. ; Jin Z. L. ; Xu J. ; Min S. X. ; Lü G. X. Acta Phys. -Chim. Sin. 2016, 32, 2581. doi: 10.3866/PKU.WHXB201606226
[23]  郝旭强; 杨浩; 靳治良; 续京; 敏世雄; 吕功煊. 物理化学学报, 2016, 32, 2581. doi: 10.3866/PKU.WHXB201606226
[24]  5 Mohamed A. M. ; Shaban S. A. ; Sayed H. A. E. ; Alanadouli B. E. ; Allam N. K. Int. J. Hydrogen Energy 2016, 41, 866. doi: 10.1016/j.ijhydene.2015.09.108
[25]  9 Madhusudan P. ; Ran J. ; Zhang J. ; Yu J. ; Liu G. Appl. Catal. B: Environ. 2011, 110, 286. doi: 10.1016/j.apcatb.2011.09.014
[26]  11 Uddin M. T. ; Nicolas Y. ; Olivier C. ; Toupance T. ; Servant L. ; Müller M. M. ; Kleebe H. J. ; Ziegler J. ; Jaegermann W. Inorg. Chem. 2012, 51, 7764. doi: 10.1021/ic300794j
[27]  16 Hong Y. ; Jiang Y. ; Li C. ; Fan W. ; Yan X. ; Yan M. ; Shi W. Appl. Catal. B: Environ. 2016, 180, 663. doi: 10.1016/j.apcatb.2015.06.057
[28]  17 Jin Z. ; Murakami N. ; Tsubota T. ; Ohno T. Appl. Catal. B: Environ. 2014, 150-151, 479. doi: 10.1016/j.apcatb.2013.12.048
[29]  18 Wang Q. ; An N. ; Bai Y. ; Hang H. ; Li J. ; Lu X. ; Liu Y. ; Wang F. ; Li Z. ; Lei Z. Int. J. Hydrogen Energy 2013, 38, 10739. doi: 10.1016/j.ijhydene.2013.02.131
[30]  19 Ratanatawanate C. ; Bui A. ; Vu K. ; Balkus K. J. J. Phys. Chem. C 2011, 115, 6175. doi: 10.1021/jp109716q
[31]  22 Kim H. J. ; Suh S. M. ; Rao S. S. ; Punnoose D. ; Tulasivarma C. V. ; Gopi C. V. V. M. ; Kundakarla N. ; Ravi S. ; Durga I.K. J. Electroanal. Chem. 2016, 777, 123. doi: 10.1016/j.jelechem.2016.07.037
[32]  23 Zhang L. J. ; Xie T. F. ; Wang D. J. ; Li S. ; Wang L. L. ; Chen L. P. ; Lu Y. C. Int. J. Hydrogen Energy 2013, 38, 11811. doi: 10.1016/j.ijhydene.2013.06.115
[33]  24 Zhang Y. ; Huang B. ; Li P. ; Wang X. ; Zhang Y. Tribol. Int. 2013, 58, 7. doi: 10.1016/j.triboint.2012.09.004
[34]  26 Zhan F. ; Li J. ; Li W. ; Liu Y. ; Xie R. ; Yang Y. ; Li Y. ; Chen Q. Int. J. Hydrogen Energy 2015, 40, 6512. doi: 10.1016/j.ijhydene.2015.03.131

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133