全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 


DOI: 10.3866/PKU.WHXB201708281

Full-Text   Cite this paper   Add to My Lib

Abstract:

作为绿色照明光源的典型代表,白光发光二极管(LED)被誉为21世纪的新一代照明光源。而作为白光LED重要组成部分的荧光粉,对其性能要求也不断被提升。Eu2+和Eu3+由于其电子结构上的差别导致其截然不同的发光性质。其中,Eu2+的特征发射为4f-4f跃迁,而Eu3+离子的特征发射为4f-5d跃迁。为了结合两者各自的发光特性,近年来对于混合价态Eu离子的研究成为热点。混合价态Eu离子掺杂荧光粉结合了Eu2+和Eu3+离子各自的发光特点,具有颜色灵活可调的优良性质。本文主要从Eu2+、Eu3+各自性质出发,从不等价取代、晶场调控等三个方面综述了混合价态Eu(+2, +3)离子激活的单一基质发光材料近年来的研究进展。此外,对不同方法制备的混合价态Eu离子掺杂荧光粉的发光性能及发光机理也进行了归纳总结,为无机荧光材料的发展提供了新的思路。
White LEDs are considered the next-generation light source as they are environmentally friendly and have high efficiencies. Therefore, researches are being conducted to meet the performance requirements of phosphors, which are the crucial components of white LEDs. Eu2+ and Eu3+ ions have different electronic structures, which lead to distinct photoluminescence properties. The characteristic emissions of Eu2+ and Eu3+ originate from the 4f-4f and 4f-5d transitions, respectively. In order to combine their respective features, the research of mixed-valence Eu ions into single-phase phosphors has become a hot research topic in recent years. The mixed-valence Eu ion-doped phosphors have tunable luminescence properties because they possess the respective properties of Eu2+ and Eu3+. From their respective characters of Eu2+ and Eu3+, this paper mainly reviews the progress of mixed valence Eu(+2, +3) ion-activated single-component luminescent materials in recent years from three aspects: unbalanced substitution, crystal field regulation, and other systems. In addition, the respective photoluminescence properties of Eu2+ and Eu3+ and the luminescence performances and mechanisms of the mixed-valence Eu ion-activated phosphors have been summarized. The luminescence performances and mechanisms have been summarized as well. All the research works carried out in this field provide inspiration for the investigation of new phosphors

References

[1]  1 George N. C. ; Denault K. A. ; Seshadri R. Annu. Rev. Mater. Res. 2013, 43, 481. doi: 10.1088/0953-8984/15/22/316
[2]  14 Xie R. J. ; Hirosaki N. ; Sakuma K. ; Yamamoto Y. Appl. Phys. Lett. 2004, 84, 5404. doi: 10.1063/1.1767596
[3]  17 Dorenbos P. Chem.Mater. 2005, 17, 6452. doi: 10.1021/cm051456o
[4]  18 Zhang J.C. ; Long Y. Z. ; Zhang H. D. ; Sun B. ; Han W. P. ; Sun X. Y. J. Mater. Chem. C 2014, 2, 312. doi: 10.1039/C3TC31798F
[5]  20 Hou J. ; Jiang W. ; Fang Y. ; Huang F. J. Mater. Chem. C 2013, 1, 5892. doi: 10.1039/C3TC30933A
[6]  21 Xie M. ; Zhu G. ; Li D. ; Pan R. ; Fu X. RSC Adv. 2016, 6, 33990. doi: 10.1039/C6RA03154D
[7]  24 Dai P. P. ; Li C. ; Zhang X. T. ; Xu J. ; Chen X. ; Wang X. L. ; Jia Y. ; Wang X. ; Liu Y. C. Light: Sci. Appl. 2016, 5, e16024. doi: 10.1038/lsa.2016.24
[8]  26 Han J. Y. ; Im W. B. ; Kim D. ; Cheong S. H. ; Lee G. Y. ; Jeon D. Y. J. Mater. Chem. 2012, 22, 5374. doi: 10.1039/C2JM15501J
[9]  31 Wang Z. ; Xia Z. ; Molokeev M. S. ; Atuchin V. V. ; Liu Q. Dalton Trans. 2014, 43, 16800. doi: 10.1039/C4DT02319F
[10]  32 Zhang Y. ; Li X. ; Li K. ; Lian H. ; Shang M. ; Lin J. ACS Appl. Mater. Interfaces 2015, 7, 2715. doi: 10.1021/am508859c
[11]  2 Lin C. C. ; Liu R. S. J. Phys. Chem. Lett. 2011, 2, 1268. doi: 10.1021/jz2002452
[12]  3 Sheu J. K. ; Chang S. J. ; Su C. H. K. K. ; Wu L. W. ; Lin Y. C. ; Lai W. C. ; Tsai J. M. ; Chi G. C. ; Wu R. K. IEEE Photonics Technology Letters 2003, 15, 18. doi: 10.1109/LPT.2002.805852
[13]  8 Li K. ; Fan J. ; Shang M. M. ; Lian H. Z. ; Lin J. J. Mater. Chem. C 2015, 3, 9989. doi: 10.1039/C5TC01993A
[14]  9 Li K. ; Lian H. Z. ; Shang M. M. ; Lin J. Dalton Trans. 2015, 44, 20542. doi: 10.1039/C5DT03565A
[15]  11 Lee G. Y. ; Han J. Y. ; Im W. B. ; Cheong S. H. ; Jeon D. Y. Inorg. Chem. 2012, 51, 10688. doi: 10.1021/ic300956m
[16]  12 Shang M. M. ; Li C. X. ; Lin J. Chem. Soc. Rev. 2014, 43, 1372. doi: 10.1039/C3CS60314H
[17]  22 Hou J. ; Jiang W. ; Fang Y. ; Huang F. J. Mater. Chem. C 2013, 1, 5892. doi: 10.1039/c3tc30933a
[18]  25 Xia Z. ; Ma C. ; Molokeev M. S. ; Liu Q. ; Rickert K. ; Poeppelmeier K. R. J. Am. Chem. Soc. 2015, 137, 12494. doi: 10.1021/jacs.5b08315
[19]  27 Wang J. ; Lin H. ; Huang Q. ; Xiao G. ; Xu J. ; Wang B. ; Hu T. ; Wang Y. J. Mater. Chem. C 2017, 5, 1789. doi: 10.1039/C6TC04350J
[20]  28 He H. ; Fu R. ; Song X. ; Wang D. ; Chen J. J. Lumin. 2008, 128, 489. doi: 10.1016/j.jlumin.2007.09.023
[21]  29 Kim T. G. ; Kim T. ; Kim J. ; Kim S. J. ; Im S. J. J. Phys. Chem. C 2014, 118, 12428. doi: 10.1021/jp5002379
[22]  33 Wei Y. ; Jia H. ; Xiao H. ; Shang M. M. ; Lin C. C. ; Su C. ; Chan T. S. ; Li G. G. ; Lin J. RSC Adv. 2017, 7, 1899. doi: 10.1039/C6RA26869B
[23]  34 Mao Z. Y. ; Wang D. J. ; Lu Q. F. ; Yu W. H. ; Yuan Z. H. Chem. Comm. 2009, 346 doi: 10.1039/B814535K
[24]  35 Mao Z. Y. ; Wang D. J. Inorg. Chem. 2010, 49, 4922. doi: 10.1021/ic902538a
[25]  36 Pawar A. ; Jadhav A. P. ; Pal U. ; Kim B. K. ; Kang Y. S. J. Lumin. 2012, 132, 659. doi: 10.1016/j.jlumin.2011.09.058
[26]  37 Saradhi M. ; Pralong V. ; Varadaraju U. ; Raveau B. Chem. Mater. 2009, 21, 1793. doi: 10.1021/cm900309p
[27]  38 Liu W. ; Liu L. ; Wang Y. ; Chen L. ; McLeod J. A. ; Yang L. ; Zhao J. ; Liu Z. ; Diwu J. ; Chai Z. Chem. -Eur. J. 2016, 22, 11170. doi: 10.1002/chem.201602621
[28]  4 Lin C. C. ; Tang Y. S. ; Hu S. F. J. Lumin. 2009, 129, 1682. doi: 10.1016/j.jlumin.2009.03.022
[29]  6 Caldin?o U. G. J. Phys.: Condens. Matter 2003, 15, 3821. doi: 10.1088/0953-8984/15/22/316
[30]  13 Dorenbos P. J. Lumin. 2003, 104, 239. doi: 10.1039/C3CS60314H
[31]  15 ParkJ. K.;A. ; L. M. ; H. ; K. C. ; D. ; P. H.;ParkT. J.;ChoiS. Y.Appl. Phys. Lett2003,82,683. doi: 10.1063/1.1767596
[32]  23 Li W. ; Wang J. ; Zhang H. ; Liu Y. ; Lei B. ; Zhuang J. ; Cui J. ; Peng M. ; Zhu Y. RSC Adv. 2016, 6, 33076. doi: 10.1039/C6RA04387A
[33]  5 Yang W. J. ; Luo L. ; Chen T. M. ; Wang N. S. Chem. Mater. 2005, 17, 3883. doi: 10.1021/cm050638f
[34]  7 Mi X. Y. ; Sun J. C. ; Zhou P. ; Zhou H. ; Song D. ; Li K. ; Shang M. M. ; Lin J. J. Mater. Chem. C 2015, 3, 4471. doi: 10.1039/C4TC02433H
[35]  10 McKittrick J. ; Shea-Rohwer L. E. J. Am. Ceram. Soc. 2014, 97, 1327. doi: 10.1111/jace.12943
[36]  16 Poesl C. ; Schnick W. Chem. Mater. 2017, 29, 3778. doi: 10.1021/acs.chemmater.7b00871
[37]  19 Gao G. ; Reibstein S. ; Peng M. ; Wondraczek L. J. Mater. Chem. 2011, 21, 3156. doi: 10.1039/C0JM03273E
[38]  30 Kalaji A. ; Mikami M. ; Cheetham A. K. Chem. Mater. 2014, 26, 3966. doi: 10.1021/cm501516m

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133