全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201512071

Full-Text   Cite this paper   Add to My Lib

Abstract:

1, 3-丁二烯是碳氢燃料燃烧和裂解过程中生成的一种重要产物,也是形成多环芳烃(PAHs)的一种重要前驱体。目前,关于1, 3-丁二烯燃烧实验以及机理的研究较多,但是其热裂解机理的研究较少。本文在B3LYP/CBSB7水平下对1, 3-丁二烯裂解过程中相关反应的反应物、产物以及过渡态进行了几何结构优化和频率计算,并通过组合方法CBS-QB3计算得到了单点能和热力学参数。对于紧致过渡态的反应和无能垒反应,分别采用过渡态理论(TST)和可变反应坐标过渡态理论(VRC-TST)计算其高压极限条件下的反应速率常数。计算得到的反应速率常数与已有文献报导的结果吻合较好。通过量子化学计算,对Hidaka等人提出1, 3-丁二烯的热裂解机理模型进行了更新和改进:更新后的机理模型包含45个物种和224步反应,并对更新后的机理模型进行了模拟验证。结果表明,更新的机理模型能更好地预测1, 3-丁二烯激波管裂解实验过程中C2H2、1-丁烯-3-炔(C4H4)以及苯(C6H6)主要产物的浓度分布,为进一步完善核心机理(C0-C4)模型提供了可靠的热、动力学参数。
1, 3-Butadiene is an important product in combustion and pyrolysis of hydrocarbon fuels and it is also an important precursor to formpolycyclic aromatic hydrocarbons (PAHs). Currently, a variety of experimental and mechanism studies have been performed on 1, 3-butadiene oxidation. However, few studies about pyrolysis mechanism of 1, 3-butadiene have been done. In this work, the optimization of the geometries and the vibrational frequencies for the reactants, products, and transition states of the relevant reactions in 1, 3-butadiene pyrolysis have been performed at the B3LYP/CBSB7 level. Their single point energies and the thermodynamic parameters are also calculated by using the composite CBS-QB3 method. The high-pressure limit rate constants for tight transition state reactions and barrierless reactions are obtained by transition state theory and variable reaction coordinate transition state theory, respectively. The calculated rate constants in this work are in good agreement with those available from literature. Furthermore, the mechanism of Hidaka et al. is updated with replacing the calculated rate constants of reactions in this work to simulate the shock tube experiment results of 1, 3-butadiene pyrolysisand the updated mechanism consists of 45 species and 224 reactions. It can be seen that the updated mechanism can improve the concentration profiles of the main products, ethylene, 1-butylene-3-acetylene, and benzene in 1, 3-butadiene pyrolysis. It can also provide reliable kinetic and thermodynamic parameters to further improve the core mechanism of C0-C4 species

References

[1]  姚通; 钟北京. 物理化学学报, 2013, 29 (7), 1385. doi: 10.3866/PKU.WHXB201304123
[2]  2 Zeng M. R. ; Yuan W. H. ; Wang Y. Z. ; Zhou W. X. ; Zhang L.D. ; Qi F. ; Li Y. Y Combust. Flame 2014, 161, 1701. doi: 10.1016/j.combustflame.2014.01.002
[3]  3 Hughes K. ; Meek M. E. ; Walker M. ; Beauchamp R 1, 3-Butadiene: Human Health Aspects. In Concise International Chemical Assessment Document 30; WHO: Geneva, Switzerland 2001, pp 1-73.
[4]  5 Kistiakovsky G. B. ; Ransom W.W. J Chem. Phys 1939, 7, 725. doi: 10.1063/1.1750519
[5]  6 Harkness J. B. ; Kistiakowski G. B. ; Mears W. H. J Chem. Phys 1937, 5, 682. doi: 10.1063/1.1750100
[6]  7 Granata S. ; Faravelli T. ; Ranzi E. ; Olten N. ; Senkan S Combust. Flame 2002, 131, 273. doi: 10.1016/S0010-2180(02)00407-8
[7]  8 Dagaut P. ; Cathonnet M Combust. Sci. Technol 1998, 140, 225. doi: 10.1080/00102209808915773
[8]  9 Hidaka, Y.; Higashihara, T.; Ninomiya, N.; Masaoka, H.; Nakamura, T.; Kawano, H. Int. J. Chem. Kinet. 1996, 28, 137.
[9]  11 Laskin, A.; Wang, H.; Law, C. K. Int. J. Chem. Kinet. 2000, 32, 589.
[10]  12 Peukert, S.; Braun-Unkhoff, M.; Naumann, C. HighTemperature Kinetics of the Pyrolysis of 1, 3-Butadiene and 2-Butyne. In Fundamental Physical and Chemical Kinetics, Proceedings of the European Combustion Meeting, Vienna, Austria, April 14-17, 2009.
[11]  15 Xu C. ; Shoaibi A. S. A. ; Wang C. G. ; Carstensen H. H. ; Dean A. M. J Phys. Chem. A 2011, 115, 10470.
[12]  19 Gonzalez C. ; Schlegel H. B. J Chem. Phys 1989, 90, 2154. doi: 10.1063/1.456010
[13]  20 Sirjean B. ; Fournet R. J Phys. Chem. A 2012, 116, 6675. doi: 10.1021/jp303680h
[14]  24 Klippenstein S. J. ; Wagner A. F. ; Dunbar R. C. ; Wardlaw D.M. ; RobertsonS.H. VariFlex, Version 1.0; Argonne NationalLaboratory: Argonne, IL 1999.
[15]  31 UCSD, The San Diego Mechanism, Version 20141004, 2014.http://maeweb.ucsd.edu/combustion/.
[16]  32 Robinson, J. C.; Harris, S. A.; Sun, W.; Sveum, N. E.; Neumark, D. M. J. Am. Chem. Soc. 2002, 124, 10211. doi: 10.1021/ja0127281
[17]  33 Dean A. M. J Phys. Chem 1985, 89, 4600. doi: 10.1021/j100267a038
[18]  34 Kossiakoff A. ; Rice F. O. J Am. Chem. Soc 1943, 65, 590. doi: 10.1021/ja01244a028
[19]  35 Fabuss B. M. ; Borsanyi A. S. ; Satterfield C. N. ; Lait R. I. ; Smith J. O Ind. Eng. Chem. Process Des. Dev 1962, 1, 293. doi: 10.1021/i260004a011
[20]  36 Wu C. H. ; Kern R. D. J Phys. Chem 1987, 91, 6291. doi: 10.1021/j100308a042
[21]  1 Yao T. ; Zhong B. J Acta Phys. -Chim. Sin 2013, 29 (7), 1385. doi: 10.3866/PKU.WHXB201304123
[22]  4 Vaughan W. E. J Am. Chem. Soc 1932, 54, 3863. doi: 10.1021/ja01349a008
[23]  10 Tsang, W. Chemical Activation Reactions in the HeptaneCombustion Kinetics Database. In AIAA 44th Aerospace Sciences Meeting and Exihibt, American Institute ofAeronautics and Astronautics, Reno, Nevada, January 9-12, 2006.
[24]  13 Montgomery J. A. ; J r. ; Frisch M. J. ; Ochterski J.W. ; Petersson G. A. J Chem. Phys 1999, 110, 2822. doi: 10.1063/1.477924
[25]  14 Miller J. A. ; Klippenstein S. J. J Phys. Chem. A 2013, 117, 2718. doi: 10.1021/jp312712p
[26]  21 Curtiss L. A. ; Raghavachari K. ; Redfern P. C. ; Pople J. A J. Chem. Phys 1997, 106, 1063. doi: 10.1063/1.473182
[27]  25 Beyer, T.; Swinehart, D. F. Comm. Assoc. Comput. Mach.1973, 16, 379.
[28]  16 Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.05; Gaussian Inc.: Pittsburgh, PA, 2003.
[29]  17 Becke A. D. J Chem. Phys 1993, 98, 1372. doi: 10.1063/1.464304
[30]  18 Lee C. ; Yang W. ; Parr R. G Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
[31]  22 Gaithersburg, M. D. NIST Computational ChemistryComparison and Benchmark Database; National Institute ofStandards and Technology. http://webbook.nist.gov/chemistry(2003).
[32]  23 Wang, H.; You, X. Q.; Joshi, A. V.; Davis, S. G.; Laskin, A.; Egolfopoulos, F. N.; Law, C. K. USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4Compounds. http://ignis.usc.edu/USC_Mech_II.htm (accessed2007).
[33]  26 Holbrook, K. A.; Pilling, M. J.; Robertson, S. H., Unimolecular Reactions, 2nd ed.; JohnWiley & Sons:Chichester, UK, 1996.
[34]  27 Miller J. A. ; Klippenstein S. J. J Phys. Chem. A 2003, 107, 2680. doi: 10.1021/jp0221082
[35]  28 Saito K. ; Kakumoto T. ; Murakami I. J Phys. Chem 1984, 88, 1182. doi: 10.1021/j150650a033
[36]  29 Welty, J. R.; Wicks, C. E.; Wilson, R. E.; Rorrer, G. L., Fundamentals of Momentum, Heat and Mass Transfer, 4th ed.; JohnWiley & Sons Ltd.: New York, 2001.
[37]  30 Metcalfe W. K. ; Burke S. M. ; Ahmed S. S. ; Curran H. J. Int. J Chem. Kinet 2013, 45, 638. doi: 10.1002/kin.2013.45.issue-10

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133