采用等温溶解法测定了偏钒酸铵(NH4VO3)在NH4H2PO4-H2O和(NH4)3PO4-H2O体系中T = 298.15-328.15 K时的溶解度以及溶液的密度和pH值。结果表明, NH4VO3的溶解度随着(NH4)3PO4或NH4H2PO4溶液浓度的增大,先降低后升高,这是由于同离子效应、化学反应平衡及离子活度的共同作用。比较T = 298.15K时, NH4VO3分别在NH4H2PO4-H2O、(NH4)2HPO4-H2O和(NH4)3PO4-H2O体系中溶解度,发现在相同的磷酸盐浓度下, NH4VO3的溶解度在NH4H2PO4-H2O体系中最大,在(NH4)3PO4-H2O体系中居中,在(NH4)2HPO4-H2O体系中最小。进一步地,在T = 298.15 K和磷酸盐浓度C = 0.5 mol·kg-1时,结合pH值和反应溶度积常数KSP等计算三个体系中的平均离子活度系数(γ±),发现γ±值在(NH4)2HPO4-H2O体系中最大,在(NH4)3PO4-H2O体系中居中,在NH4H2PO4-H2O体系中最小,与溶解度规律一致。 The solubility of ammonium metavanadate (NH4VO3) in NH4H2PO4-H2O and (NH4)3PO4-H2O systems at T = 298.15-328.15 K was measured using the classic isothermal dissolution method. The densities and pH values of the solutions were also determined. The solubility of NH4VO3 decreased at first and then increased with increasing NH4H2PO4 or (NH4)3PO4 concentrations. This was considered to be caused by the common ionic effect, chemical reaction equilibrium and ionic activity. At T = 298.15 K, the solubility of NH4VO3 in the NH4H2PO4-H2O system was the highest, and was lower in the (NH4)3PO4-H2O system. The solubility in the (NH4)2HPO4-H2O system was the lowest. The mean ionic activity coefficients were calculated for the three phosphate solutions at C = 0.5 mol·kg-1 using the pH values and dissolution reaction constant. The mean ionic activity coefficients were the largest for the (NH4)2HPO4-H2O system, and were smaller for the (NH4)3PO4-H2O system. The mean ionic activity coefficients were the smallest for the NH4H2PO4-H2O system, which agrees with the solubility variations of NH4VO3 in the three phosphate systems
References
[1]
2 Li W. ; Zhang Y. M. ; Liu T. ; Huang J. ; Wang Y. Hydrometallurgy 2013, 131, 1. doi: 10.1016/j.hydromet.2012.09.009
[2]
3 Li Y. ; Zhang T. T. ; Li Y. ; Jia B. ; Tan H. H. ; Yu J. Acta Phys. -Chim. Sin. 2015, 31, 1541. doi: 10.3866/PKU.WHXB201505261
7 Kim H. I. ; Lee K.W. ; Mishra D. ; Yi K. M. ; Hong J. H. ; Jun M. K. ; Park H. K. J. Ind. Eng. Chem 2014, 20, 4457. doi: 10.1016/j.jiec.2014.02.017
[6]
8 Hu G. P. ; Chen D. S. ; Wang L. N. ; Liu J. C. ; Zhao H. X. ; Liu Y. H. ; Qi T. ; Zhang C. Q. ; Yu P. Sep. Purif. Technol. 2014, 125, 59. doi: 10.1016/j.seppur.2014.01.031
[7]
15 Trypu? M. ; Stefanowicz D. I. J. Chem. Eng. Data 1997, 42, 1140. doi: 10.1021/je970109v
[8]
16 Trypu? M. ; Kielkowska U. J. Chem. Eng. Data 1996, 41, 1005. doi: 10.1021/je950290c
[9]
20 Trypu? M. ; Lyjak G. J. Chem. Eng. Data 2000, 45, 872. doi: 10.1021/je000091f
[10]
27 Feng M. ; Wang S. N. ; Du H. ; Zheng S. L. ; Zhang Y. Fluid Phase Equilib. 2016, 409, 119. doi: 10.1016/j.fluid.2015.08.018
[11]
28 Gong X. L. ; Ning P. G. ; Cao H. B. ; Zhang C. Q. J. Chem. Eng. Data 2016, 61, 628. doi: 10.1021/acs.jced.5b00780
[12]
29 Shock E. L. ; Sassani D. C. ; Willis M. ; Sverjensky D. A. Geochim. Cosmochim. Acta 1997, 61, 907. doi: 10.1016/S0016-7037(96)00339-0
[13]
30 Shock E. L. ; Helgeson H. C. Geochim. Cosmochim. Acta 1988, 52 doi: 10.1016/0016-7037(88)90181-0
[14]
9 Liu J. ; Zhao Z. ; Wang H. X. ; Duan A. J. ; Jiang G. Y. Acta Phys. -Chim. Sin. 2011, 27, 2659. doi: 10.3866/PKU.WHXB20111108
11 Zhang Y. M. ; Bao S. X. ; Liu T. ; Chen T. J. ; Huang J. Hydrometallurgy 2011, 109, 116. doi: 10.1016/j.hydromet.2011.06.002
[17]
13 Chen J. Y. Handbook of hydrometallurgy1st ed Beijing: Metallurgical Industry Press, 2005.
[18]
陈家镛. 湿法冶金手册, 北京: 冶金工业出版社, 2005, 944- 946.
[19]
17 Trypu? M. ; Bialowicz K. J. Chem. Eng. Data 1997, 42, 318. doi: 10.1021/je960259q
[20]
25 Zhao C. ; Feng M. ; Wang S. N. ; Du H. ; Zheng S. L. ; Xie H. Chem. Ind. Eng. Prog. 2014, 33, 1408.
[21]
赵楚; 冯曼; 王少娜; 杜浩; 郑诗礼; 谢华. 化工进展, 2014, 33, 1408.
[22]
26 Druzynski S. ; Mazurek K. ; Kie?kowska U. ; Szalla A. ; Wróbel A. Fluid Phase Equilib. 2015, 404, 75. doi: 10.1016/j.fluid.2015.06.036
[23]
31 Shock E. L. ; Helgeson H. C. ; Sverjensky D. A. Geochim. Cosmochim. Acta 1989, 53, 2157. doi: 10.1016/0016-7037(89)90341-4
[24]
32 Weast R. C. ; Astle M. J. CRC Handbook of Chemistry and Physics 60th ed Boca Raton, FL: CRC Press, 1980.
[25]
33 Gurvich L. V. ; Veyts I. V. ; Alcock C. B. Thermodynamic Properties of Individual Substances 4th ed New York: Hemisphere Publishing Corporation, 1989.
[26]
34 Li Y. G. Thermodynamics of Metal Solvent Extraction Beijing: Tsinghua University Press, 1988, pp 105- 108.
[27]
李以圭. 金属溶剂萃取热力学, 北京: 清华大学出版社, 1988, 105- 108.
[28]
35 Li Y. G. ; Lu J. F. Electrolyte Solution Theories Beijing: Tsinghua University Press, 2005, pp 67- 68.
[29]
李以圭; 陆九芳. 电解质溶液理论, 北京: 清华大学出版社, 2005, 67- 68.
[30]
36 Liu F. ; Ning P. G. ; Cao H. B. ; Zhang Y. J. Chem. Thermodyn. 2015, 80, 13. doi: 10.1016/j.jct.2014.08.011
[31]
1 Moskalyk R. R. ; Alfantazi A. M. Minerals Engineering 2003, 16, 793. doi: 10.1016/S0892-6875(03)00213-9
[32]
4 Sun X. F. ; Xu Y. L. ; Zheng X. Y. ; Meng X. F. ; Ding P. ; Ren H. ; Li L. Acta Phys. -Chim. Sin. 2015, 31, 1513. doi: 10.3866/PKU.WHXB201506082