全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 


DOI: 10.3866/PKU.WHXB201612122

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了基于氧化钯(PdO)电极的电位型传感器的敏感特性,并探讨了其敏感机理.首先,利用Mg、Ni和La元素对PdO电极进行掺杂,将掺杂后的PdO电极印刷在氧化锆电解质上,制备成电位型传感器,并对一氧化碳(CO)的敏感特性进行了测试.由于掺杂后的PdO电极表面缺陷增加,这有利于对CO的吸附,有效地提高了传感器的灵敏度.其次,为了探究敏感信号的来源, PdO电极分别印刷在氧化铝和沸石基片上,同样测试了对CO的敏感特性.其中PdO电极与沸石所组成的电位型传感器对CO浓度可以产生阶梯型响应.最后,对传感器分别进行了电阻和阻抗谱的测量,测量结果表明:传感器的响应可以归因于电极和电解质之间界面电位的变化.综合上述研究结果,建立了电偶层模型来解释基于PdO电极的电位型传感器的工作机理.
This paper describes the sensing properties of a potentiometric sensor based on a palladium oxide (PdO) electrode. Our investigation of the sensing mechanism is also discussed. We studied carbon monoxide (CO) sensing performance of a PdO electrode doped with Mg, Ni, and La, printed on zirconia. The results indicated that defects on the surface of PdO, which allow adsorption of CO, can effectively enhance the sensitivity of the sensors. To explore the source of the signal, a PdO-based electrode was printed on an alumina disc and a zeolite pellet for CO detection at 450℃. Notably the zeolite coupled with the PdO-based electrode to generate potentiometric responses to changes in CO concentration. According to the resistance and impedance measurements, the response to CO was ascribed to the changing interfacial potential between the PdO electrode and electrolyte. A model based on an electrochemical double layer between the PdO and electrolyte was determined to explain the behavior of the potentiometric sensor. It may be possible to harness these effects at PdO electrodes for the development of electrochemical sensors

References

[1]  1 Park C. O. ; Fergus J. W. ; Miura N. ; Park J. ; Choi A. Ionics 2009, 15, 261. doi: 10.1007/s11581-008-0300-6
[2]  4 Tang W. ; Wang J. ; Yao P. J. ; Du H. Y. ; Sun Y. H. ActaPhys. -Chim. Sin. 2014, 30 (4), 781. doi: 10.3866/PKU.WHXB201402191
[3]  唐伟; 王兢; 姚朋军; 杜海英; 孙炎辉. 物理化学学报, 2014, 30 (4), 781. doi: 10.3866/PKU.WHXB201402191
[4]  8 Zhu L. ; Zheng Y. ; Jian J. Ionics 2015, 21, 2919. doi: 10.1007/s11581-015-1487-y
[5]  9 Zhang W. F. ; Schmidt-Zhang P. ; Guth U. Solid State Ionics 2004, 169, 121. doi: 10.1016/j.ssi.2003.10.004
[6]  10 Auerbach S. M. ; Carrado K. A. ; Dutta P. K. Handbook ofZeolite Science and Technology; Marcel Dekker Inc.: New York 2003.
[7]  11 Zheng Y. ; Qiao Q. ; Wang J. ; Li X. ; Jian J. Sens. Actuator BChem. 2015, 212, 256. doi: 10.1016/j.snb.2015.02.035
[8]  12 Bukhari S. M. ; Giorgi J. B. Solid State Ionics 2010, 181, 392. doi: 10.1016/j.ssi.2010.01.017
[9]  14 Zheng Y. ; Wang J. ; Yao P. Sens. Actuator B-Chem. 2011, 156, 723. doi: 10.1016/j.snb.2011.02.026
[10]  15 Gurlo A. Nanoscale 2011, 3, 154. doi: 10.1039/c0nr00560f
[11]  21 Stetter J. R. ; Li J. Chem. Rev. 2008, 108, 352. doi: 10.1021/cr0681039
[12]  22 Garzon F. H. ; Mukundan R. ; Brosha E. L. Solid-State MixedPotential Gas Sensors: Theory, Experiments and Challenges; Elsevier: Kidlington, Royaume-Uni 2000.
[13]  24 Lim D. K. ; Im H. N. ; Song S. J. Sci. Rep. 2016, 6, 18804. doi: 10.1038/srep18804
[14]  25 Simon P. ; Gogotsi Y. Nat. Mater. 2008, 7, 845. doi: 10.1038/nmat2297
[15]  2 Di Bartolomeo E. ; Grilli M. L. ; Traversa E. J. Electrochem. Soc. 2004, 151, H133. doi: 10.1149/1.1695387
[16]  23 Sridhar S. ; Stancovski V. ; Pal U. B. Solid State Ionics 1997, 100, 17. doi: 10.1016/S0167-2738(97)00322-6
[17]  28 Weaver J. F. Chem. Rev. 2013, 113, 4164. doi: 10.1021/cr300323wl
[18]  30 Miura N. ; Raisen T. ; Lu G. ; Yamazoe N. J. Electrochem. Soc. 1997, 144, L198. doi: 10.1149/1.1344558
[19]  6 Korotcenkov G. Mat. Sci. Eng. B-Solid 2007, 139, 1. doi: 10.1016/j.mseb.2007.01.044
[20]  7 Chiang Y. J. ; Pan F. M. J. Phys. Chem. C. 2013, 117, 15593. doi: 10.1021/jp402074w
[21]  16 Burbano M. ; Norberg S. T. ; Hull S. ; Eriksson S. G. ; Marrocchelli D. ; Madden P. A. ; Watson G. W. Chem. Mater. 2011, 24, 222. doi: 10.1021/cm2031152
[22]  17 Zhang J. ; Xie K. ; Wei H. ; Qin Q. ; Qi W. ; Yang L. ; Ruan C. ; Wu Y. Sci. Rep. 2014, 4, 7082. doi: 10.1038/srep07082
[23]  19 Elumalai P. ; Wang J. ; Zhuiykov S. ; Terada D. ; Hasei M. ; Miura N. J. Electrochem. Soc. 2005, 152, H95. doi: 10.1149/1.1923707
[24]  20 Mukundan R. ; Brosha E. L. ; Brown D. R. ; Garzon F. H.J. Electrochem. Soc. 2000, 147, 1583. doi: 10.1149/1.1393398
[25]  26 Gong X. Q. ; Hu P. ; Raval R. J. Chem. Phys. 2003, 119, 6324. doi: 10.1063/1.1602053
[26]  29 Macam E. R. ; Blackburn B. M. ; Wachsman E. D. Sens.Actuator B-Chem. 2011, 157, 353. doi: 10.1016/j.snb.2011.05.014
[27]  3 Di Bartolomeo E. ; Grilli M. L. ; Yoon J. W. ; Traversa E.J. Am. Chem. Soc. 2004, 87, 1883. doi: 10.1111/j.1151-2916.2004.tb06335.x
[28]  5 Feng Q. X. ; Yu P. ; Wang J. ; Li X. G. Acta Phys. -Chim. Sin. 2015, 31 (12), 2405. doi: 10.3866/PKU.WHXB201510261
[29]  冯秋霞; 于鹏; 王兢; 李晓干. 物理化学学报, 2015, 31 (12), 2405. doi: 10.3866/PKU.WHXB201510261
[30]  13 McFarland E. W. ; Metiu H. Chem. Rev. 2013, 113, 4391. doi: 10.1021/cr300323w
[31]  18 Kim Y. M. ; He J. ; Biegalski M. D. ; Ambaye H. ; Lauter V. ; Christen H. M. ; Pantelides S. T. ; Pennycook S. J. ; Kalinin S.V. ; Borisevich A. Y. Nat. Mater. 2012, 11, 888. doi: 10.1038/NMAT3393
[32]  27 Gabasch H. ; Knop-Gericke A. ; Schlogl R. ; Borasio M. ; Weilach C. ; Rupprechter G. ; Penner S. ; Jenewein B. ; Hayek K. ; Klotzer B. Phys. Chem. Chem. Phys. 2007, 9, 533. doi: 10.1039/b610719b

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133