制备了1-甲基-3-丙基咪唑硫离子液体电解质,并应用在量子点敏化太阳能电池中。通过优化S和Na2S的浓度,电解质的电导率在25℃下达到了12.96 mS·cm-1。差示扫描量热法分析表明离子液体电解质的玻璃化转变温度为-85℃。采用该电解质的量子点敏化太阳能电池在25℃下达到了3.03%的光电转化效率(η),与采用水基电解质的电池的效率3.34%接近。由于本文中的离子液体电解质具有低玻璃化转变温度和不易挥发的优点,采用离子液体电解质的量子点敏化太阳能电池在-20℃ (η=2.32%)及80℃ (η=1.90%)的温度下表现出了比水基电解质优异的光电转化性能。 We report the preparation and application of a 1-methyl-3-propylimidazolium sulfide-based ionic liquid electrolyte for quantum-dot-sensitized solar cells. By optimizing the concentrations of S and Na2S, a considerable conductivity of 12.96 mS·cm-1 is achieved at 25℃. Differential scanning calorimetry indicates that the glass transition temperature of the electrolyte is-85℃. The quantum-dot-sensitized solar cell assembled with this ionic liquid electrolyte displays a high energy conversion efficiency (η) of 3.03% at 25℃, which is comparable to the efficiency of quantum-dot-sensitized solar cells using a water-based polysulfide electrolyte (η= 3.34%). Due to the favorable thermal properties of this ionic liquid electrolyte (lower glass transition temperature and nonvolatility at higher temperatures), the quantum-dot-sensitized solar cell maintains satisfactory η even at-20℃ (η= 2.32%) and 80℃ (η= 1.90%), which is superior to the cell using the water-based polysulfide electrolyte
References
[1]
10 Wang Q.Y. ; Chen C. ; Liu W. ; Gao S. M. ; Yang X. C. J. Nanopart. Res 2016, 18 (1) doi: 10.1007/s11051-015-3314-9
[2]
11 Lee Y. L. ; Chang C. H. J. Power Sources 2008, 185 (1), 584. doi: 10.1016/j.jpowsour.2008.07.014
[3]
16 Shi J. F. ; Fan Y. ; Xu X. Q. ; Xu G. ; Chen L. H. Acta Phys. -Chim. Sin 2012, 28 (4), 857. doi: 10.3866/PKU.WHXB201202204
17 Wu J. ; Hao S. ; Lan Z. ; Lin J. ; Huang M. ; Huang Y. ; Li P. ; Yin S. ; Sato T. J. Am. Chem. Soc 2008, 130 (35), 11568. doi: 10.1021/ja802158q
[6]
18 Jovanovski V. ; González-Pedro V. ; Giménez S. ; Azaceta E. ; Caba?ero G. N. ; Grande H. ; Tena-Zaera R. ; Mora-Seró I. N. ; Bisquert J. J. Am. Chem. Soc 2011, 133 (50), 20156. doi: 10.1021/ja2096865
[7]
20 Zhou, Z. B.; Matsumoto, H.; Tatsumi, K. ChemPhysChem 2005, 6 (7), 1324. doi: 10.1002/cphc.200500094
[8]
21 Shi J. ; Chen J. ; Li Y. ; Zhu Y. ; Xu G. ; Xu J. J. Power Sources 2015, 282, 51. doi: 10.1016/j.jpowsour.2015.02.022
[9]
6 Bai S. L. ; Lu W. H. ; Li D. Q. ; Li X. N. ; Fang Y. Y. ; Lin Y. Acta Phys. -Chim. Sin 2014, 30 (6), 1107. doi: 10.3866/PKU.WHXB201404111
7 Wei H. Y. ; Wang G. S. ; Wu H. J. ; Luo Y. H. ; Li D. M. ; Meng Q. B. Acta Phys. -Chim. Sin 2016, 32 (1), 201. doi: 10.3866/PKU.WHXB201512031
[12]
8 Feng W. L. ; Li Y. ; Du J. ; Wang W. ; Zhong X. H. J. Mater. Chem. A 2016, 4 (4), 1461- 1468. doi: 10.1039/C5TA08209A
[13]
15 Lee H. ; Wang M. ; Chen P. ; Gamelin D. R. ; Zakeeruddin S. M. ; Gr?tzel M. ; Nazeeruddin M. K. Nano Lett 2009, 9 (12), 4221. doi: 10.1021/nl902438d
[14]
22 Hagfeldt A. ; Boschloo G. ; Sun L. ; Kloo L. ; Pettersson H. Chem. Rev 2010, 110 (11), 6595. doi: 10.1021/cr900356p
[15]
23 Huo Z. P. ; Tao L. ; Wang S. M. ; Wei J. F. ; Zhu J. ; Dong W. W. ; Liu F. ; Chen S. H. ; Zhang B. ; Dai S. Y. J. Power Sources 2015, 284, 582. doi: 10.1016/j.jpowsour.2015.03.049
[16]
24 Farooq W. A. ; Fatehmulla A. ; Aslam M. ; Atif M. ; Ali S. M. ; Yakuphanoglu F. ; Yahia I. S. J. Nanoelectron. Optoe 2014, 9 (5), 671. doi: 10.1166/jno.2014.1653
[17]
25 Chen J. ; Lei W. ; Deng W. Q. Nanoscale 2011, 3 (2), 674. doi: 10.1039/C0NR00591F
2 Moia D. ; Leijtens T. ; Noel N. ; Snaith H. J. ; Nelson J. ; Barnes P. R. F. Adv. Mater 2015, 27 (39), 5889. doi: 10.1002/adma.201501919
[20]
3 Tian J. ; Lv L. ; Fei C. ; Wang Y. ; Liu X. ; Cao G. J. Mater. Chem. A 2014, 2 (46), 19653. doi: 10.1039/C4TA04534C
[21]
4 Wang S. M. ; Dong W.W. ; Fang X. D. ; Deng Z. H. ; Shao J. Z. ; Hu L. H. ; Zhu J. Acta Phys. -Chim. Sin 2014, 30 (5), 873. doi: 10.3866/PKU.WHXB201403042