全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 


DOI: 10.3866/PKU.WHXB201611251

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用水热法合成了含有89%{101}晶面的TiO2纳米锭(TiO2-101)和77%{001}晶面的TiO2纳米片(TiO2-001),将其用作载体来制备担载钯催化剂;研究了上述制备的TiO2纳米材料对Pd/TiO2-101和Pd/TiO2-001催化剂用于乙炔选择加氢制聚合级乙烯催化性能的影响.结果表明, Pd/TiO2-101催化剂表现出更好的乙炔转化率和乙烯收率.通过氢气程序升温脱附(H2-TPD)、氢气程序升温还原(H2-TPR)、透射电子显微镜(TEM)、CO化学吸附、X射线光电子能谱(XPS)和热重分析仪(TGA)等对催化剂进行了结构表征和分析.TEM和CO化学吸附结果表明, Pd纳米颗粒(NPs)在TiO2-101载体上有较小的颗粒尺寸(1.53 nm)和较高的分散度(15.95%);而Pd纳米颗粒在TiO2-001载体上的颗粒尺寸是4.36 nm和9.06%的分散度.Pd/TiO2-101催化剂上较小的Pd颗粒尺寸及其较高的分散度使催化剂具有更多的反应活性位点,这促进了其反应的催化活性.
Anatase TiO2 nanospindles containing 89% exposed {101} facets (TiO2-101) and nanosheets with 77% exposed {001} facets (TiO2-001) were hydrothermally synthesized and used as supports for Pd catalysts. The effects of the TiO2 materials on the catalytic performance of Pd/TiO2-101 and Pd/TiO2-001 catalysts were investigated in the selective hydrogenation of acetylene to polymer-grade ethylene. The Pd/TiO2-101 catalyst exhibited enhanced performance in terms of acetylene conversion and ethylene yield. To understand these effects, the catalysts were characterized by H2 temperature-programmed desorption (H2-TPD), H2 temperatureprogrammed reduction (H2-TPR), transmission electron microscopy (TEM), pulse CO chemisorption, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The TEM and CO chemisorption results confirmed that Pd nanoparticles (NPs) on the TiO2-101 support had a smaller average particle size (1.53 nm) and a higher dispersion (15.95%) than those on the TiO2-001 support (average particle size of 4.36 nm and dispersion of 9.06%). The smaller particle size and higher dispersion of Pd on the Pd/TiO2-101 catalyst provided more reaction active sites, which contributed to the improved catalytic activity of this supported catalyst

References

[1]  4 Crespo-Quesada M. ; Yarulin A. ; Jin M. ; Xia Y. ; Kiwi-Minsker L. J. Am. Chem. Soc. 2011, 133, 12787. doi: 10.1021/ja204557m
[2]  18 Chen M. H. ; Chu W. ; Dai X. Y. ; Zhang X. W. Catal. Today 2004, 89, 201. doi: 10.1016/j.cattod.2003.11.027
[3]  19 Li Y. ; Jang B.W. L. Appl. Catal. A 2011, 392, 173. doi: 10.1016/j.apcata.2010.11.008
[4]  21 Panpranot J. ; Nakkararuang L. ; Ngamsom B. ; Praserthdam P. Catal. Lett. 2005, 103, 53. doi: 10.1007/s10562-005-6502-x
[5]  24 Si R. ; Flytzani-Stephanopoulos M. Angew. Chem. Int. Ed. 2008, 47, 2884. doi: 10.1002/(ISSN)1521-3773
[6]  28 Liu L. ; Gu X. ; Cao Y. ; Yao X. ; Zhang L. ; Tang C. ; Gao F. ; Dong L. ACS Catal. 2013, 3, 2768. doi: 10.1021/cs400492w
[7]  34 Tian F. ; Zhang Y. ; Zhang J. ; Pan C. J. Phys. Chem. C 2012, 116, 7515. doi: 10.1021/jp301256h
[8]  36 Sárkány A. ; Schay Z. ; Frey K. ; Széles é. ; Sajó I. Appl. Catal.A 2010, 380, 133. doi: 10.1016/j.apcata.2010.03.042
[9]  37 Menezes W. G. ; Altmann L. ; Zielasek V. ; Thiel K. ; B?umer M. J. Catal. 2013, 300, 125. doi: 10.1016/j.jcat.2012.12.023
[10]  39 Wang N. ; Xu Z. ; Deng J. ; Shen K. ; Yu X. ; Qian W. ; Chu W. ; Wei F. ChemCatChem 2014, 6, 1470. doi: 10.1002/cctc.201300720
[11]  46 Ikeda S. ; Sugiyama N. ; Murakami S. Y. ; Kominami H. ; Kera Y. ; Noguchi H. ; Uosaki K. ; Torimoto T. ; Ohtani B. Phys.Chem. Chem. Phys. 2003, 5, 778. doi: 10.1039/b206594k
[12]  47 Nakaoka Y. ; Nosaka Y. J. Photochem. Photobiol. A 1997, 110, 299. doi: 10.1016/S1010-6030(97)00208-6
[13]  48 Salama T. M. ; Hattori H. ; Kita H. ; Ebitani K. ; Tanaka T. J. Chem. Soc. Faraday Trans. 1993, 89, 2067. doi: 10.1039/FT9938902067
[14]  49 McCue A. J. ; McKenna F. M. ; Anderson J. A. Catal. Sci.Technol. 2015, 5, 2449. doi: 10.1039/C5CY00065C
[15]  51 Neyertz C. ; Volpe M. Colloids Surf. A 1998, 136, 63. doi: 10.1016/S0927-7757(97)00249-5
[16]  61 Lopez E. ; Ordonez S. ; Diez F. V. Appl. Catal. B 2006, 62, 57. doi: 10.1016/j.apcatb.2005.06.014
[17]  31 He Y. ; Fan J. ; Feng J. ; Luo C. ; Yang P. ; Li D. J. Catal. 2015, 331, 118. doi: 10.1016/j.jcat.2015.08.012
[18]  32 Tan Z. ; Sato K. ; Takami S. ; Numako C. ; Umetsu M. ; Soga K. ; Nakayama M. ; Sasaki R. ; Tanaka T. ; Ogino C. ; Kondo A. ; Yamamoto K. ; Hashishin T. ; Ohara S. RSC Adv. 2013, 3, 19268. doi: 10.1039/c3ra43383h
[19]  33 Zheng J. ; Liu Z. ; Liu X. ; Yan X. ; Li D. ; Chu W. J. Alloy.Compd. 2011, 509, 3771. doi: 10.1016/j.jallcom.2010.12.152
[20]  40 Douidah A. ; Marécot P. ; Szabo S. ; Barbier J. Appl. Catal. A 2002, 225, 21. doi: 10.1016/S0926-860X(01)00627-5
[21]  43 Yu W. Y. ; Mullen G. M. ; Mullins C. B. J. Phys. Chem. C 2013, 117, 19535. doi: 10.1021/jp406736b
[22]  44 Huang L. ; Chu W. ; Zhang T. ; Yin Y. ; Tao X. J. Nat. Gas Chem. 2009, 18, 35. doi: 10.1016/S1003-9953(08)60082-1
[23]  45 Han X. ; Chu W. ; Ni P. ; Luo S. Z. ; Zhang T. J. Fuel Chem.Technol. 2007, 35, 691. doi: 10.1016/S1872-5813(08)60004-3
[24]  50 Riyapan S. ; Boonyongmaneerat Y. ; Mekasuwandumrong O. ; Praserthdam P. ; Panpranot J. Catal. Today 2015, 245, 134. doi: 10.1016/j.cattod.2014.07.017
[25]  52 Ziemecki S. B. ; Michel J. B. ; Jones G. A. Reac. Solids 1986, 2, 187. doi: 10.1016/0168-7336(86)80082-1
[26]  53 Gómez-Quero S. ; Cárdenas-Lizana F. ; Keane M. A. Ind. Eng.Chem. Res. 2008, 47, 6841. doi: 10.1021/ie0716565
[27]  54 Aytam H. P. ; Akula V. ; Janmanchi K. ; Kamaraju S. R. R. ; Panja K. R. ; Gurram K. ; Niemantsverdriet J. W. J. Phys.Chem. B 2002, 106, 1024. doi: 10.1021/jp012357a
[28]  55 Panpranot J. ; Kontapakdee K. ; Praserthdam P. J. Phys. Chem.B 2006, 110, 8019. doi: 10.1021/jp057395z
[29]  56 Xu J. ; Sun K. ; Zhang L. ; Ren Y. ; Xu X. Catal. Commun. 2005, 6, 462. doi: 10.1016/j.catcom.2005.04.006
[30]  62 Azizi Y. ; Petit C. ; Pitchon V. J. Catal. 2008, 256, 338. doi: 10.1016/j.jcat.2008.04.003
[31]  1 Kuhn M. ; Lucas M. ; Claus P. Ind. Eng. Chem. Res. 2015, 54, 6683. doi: 10.1021/acs.iecr.5b01682
[32]  2 Studt F. ; Abild-Pedersen F. ; Bligaard T. ; S?rensen R. Z. ; Christensen C. H. ; N?rskov J. K. Science 2008, 320, 1320. doi: 10.1126/science.1156660
[33]  3 Kim S. K. ; Kim C. ; Lee J. H. ; Kim J. ; Lee H. ; Moon S. H. J. Catal. 2013, 306, 146. doi: 10.1016/j.jcat.2013.06.018
[34]  5 Hong J. ; Chu W. ; Chen M. ; Wang X. ; Zhang T. Catal.Commun. 2007, 8, 593. doi: 10.1016/j.catcom.2006.08.010
[35]  6 Kim W. J. ; Moon S. H. Catal. Today 2012, 185, 2. doi: 10.1016/j.cattod.2011.09.037
[36]  7 Pei G. X. ; Liu X.Y. ; Wang A. ; Lee A. F. ; Isaacs M. A. ; Li L. ; Pan X. ; Yang X. ; Wang X. ; Tai Z. ; Wilson K. ; Zhang T. ACS Catal. 2015, 5, 3717. doi: 10.1021/acscatal.5b00700
[37]  8 Lee J. H. ; Kim S. K. ; Ahn I. Y. ; Kim W. J. ; Moon S. H. Catal. Commun. 2011, 12, 1251. doi: 10.1016/j.catcom.2011.04.015
[38]  12 Kontapakdee K. ; Panpranot J. ; Praserthdam P. Catal.Commun. 2007, 8, 2166. doi: 10.1016/j.catcom.2007.03.003
[39]  13 He Y. ; Liang L. ; Liu Y. ; Feng J. ; Ma C. ; Li D. J. Catal. 2014, 309, 166. doi: 10.1016/j.jcat.2013.09.017
[40]  14 Osswald J. ; Giedigkeit R. ; Jentoft R. ; Armbruster M. ; Girgsdies F. ; Kovnir K. ; Ressler T. ; Grin Y. ; Schlogl R. J. Catal. 2008, 258, 210. doi: 10.1016/j.jcat.2008.06.013
[41]  15 Neumann M. ; Teschner D. ; Knop-Gericke A. ; Reschetilowski W. ; Armbrüster M. J. Catal. 2016, 340, 49. doi: 10.1016/j.jcat.2016.05.006
[42]  20 Chu W. ; Xu J. ; Hong J. ; Lin T. ; Khodakov A. Catal. Today 2015, 256, 41. doi: 10.1016/j.cattod.2015.05.024
[43]  22 Panpranot J. ; Kontapakdee K. ; Praserthdam P. Appl. Catal. A 2006, 314, 128. doi: 10.1016/j.apcata.2006.08.024
[44]  23 Wang N. ; Qian W. ; Chu W. ; Wei F. Catal. Sci. Technol. 2016, 6, 3594. doi: 10.1039/C5CY01790D
[45]  25 Liu L. ; Yao Z. ; Deng Y. ; Gao F. ; Liu B. ; Dong L. ChemCatChem 2011, 3, 978. doi: 10.1002/cctc.v3.6
[46]  26 Wang F. ; Zhang S. ; Li C. ; Liu J. ; He S. ; Zhao Y. ; Yan H. ; Wei M. ; Evans D. G. ; Duan X. RSC Adv. 2014, 4, 10834. doi: 10.1039/c3ra47076h
[47]  35 Komhom S. ; Mekasuwandumrong O. ; Praserthdam P. ; Panpranot J. Catal. Commun. 2008, 10, 86. doi: 10.1016/j.catcom.2008.07.039
[48]  57 Liu Y. N. ; Feng J. T. ; He Y. F. ; Sun J. H. ; Li D. Q. Catal. Sci.Technol. 2015, 5, 1231. doi: 10.1039/C4CY01160K
[49]  58 Kim E. ; Shin E.W. ; Bark C.W. ; Chang I. ; Yoon W. J. ; Kim W. J. Appl. Catal. A 2014, 471, 80. doi: 10.1016/j.apcata.2013.11.036
[50]  59 Zhang S. ; Chen C. Y. ; Jang B.W. L. ; Zhu A. M. Catal. Today 2015, 256, 161. doi: 10.1016/j.cattod.2015.04.002
[51]  60 Pachulski A. ; Sch?del R. ; Claus P. Appl. Catal. A 2011, 400, 14. doi: 10.1016/j.apcata.2011.03.019
[52]  9 Wang Z. Q. ; Zhou Z. M. ; Zhang R. ; Li L. ; Cheng Z. M. Acta Phys.-Chim. Sin. 2014, 30, 2315. doi: 10.3866/PKU.WHXB201410152
[53]  王沾祺; 周志明; 张锐; 李莉; 程振民. 物理化学学报, 2014, 30, 2315. doi: 10.3866/PKU.WHXB201410152
[54]  10 Gu H. ; Xu B. L. ; Zhou J. ; Li Y. Z. ; Fan Y. N. Acta Phys.-Chim. Sin. 2006, 22, 712. doi: 10.3866/PKU.WHXB20060613
[55]  顾虹; 许波连; 周静; 李远志; 范以宁. 物理化学学报, 2006, 22, 712. doi: 10.3866/PKU.WHXB20060613
[56]  11 Guo Z. L. ; Huang L. Q. ; Chu W. ; Luo S. Z. Acta Phys.-Chim.Sin. 2014, 30, 723. doi: 10.3866/PKU.WHXB201402242
[57]  郭章龙; 黄丽琼; 储伟; 罗仕忠. 物理化学学报, 2014, 30, 723. doi: 10.3866/PKU.WHXB201402242
[58]  16 Gao Z. ; Zhang Y. ; Li D. ; Werth C. J. ; Zhang Y. ; Zhou X. J. Hazard. Mater. 2015, 286, 425. doi: 10.1016/j.jhazmat.2015.01.005
[59]  17 Teschner D. ; Borsodi J. ; Wootsch A. ; Révay Z. ; H?vecker M. ; Knop-Gericke A. ; Jackson S. D. ; Schl?gl R. Science 2008, 320, 86. doi: 10.1126/science.1155200
[60]  27 Shi Q. ; Li Y. ; Zhou Y. ; Miao S. ; Ta N. ; Zhan E. ; Liu J. ; Shen W. J. Mater. Chem. A 2015, 3, 14409. doi: 10.1039/C5TA02897C
[61]  29 Yang J. ; Cao L. X. ; Wang G. C. J. Mol. Model. 2012, 18, 3329. doi: 10.1007/s00894-011-1337-4
[62]  30 Han X. ; Kuang Q. ; Jin M. ; Xie Z. ; Zheng L. J. Am. Chem.Soc. 2009, 131, 3152. doi: 10.1021/ja8092373
[63]  38 Vincent M. J. ; Gonzalez R. D. Appl. Catal. A 2001, 217, 143. doi: 10.1016/S0926-860X(01)00586-5
[64]  41 Dole H. A. E. ; Safady L. F. ; Ntais S. ; Couillard M. ; Baranova E. A. J. Catal. 2014, 318, 85. doi: 10.1016/j.jcat.2014.07.003
[65]  42 Panagiotopoulou P. ; Kondarides D. I. J. Catal. 2009, 267, 57. doi: 10.1016/j.jcat.2009.07.014

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133