制备了V取代的磷钼酸H3+xPMo12-xVxO40(x=0,1,2)及1-丁基-3-甲基咪唑溴盐离子液体([C4mim]Br),并采用离子交换的方法制备了系列杂化材料([C4mim]3+xPMo12-xVxO40,x=0,1,2);采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、紫外-可见漫反射光谱(UV-Vis DRS)对所制备样品进行了表征;以H2O2为氧化剂,考察了所得样品催化苯羟基化制苯酚的活性。结果表明,和相应的离子液体及杂多酸相比,杂化材料的催化活性得到了很大的提高,尤其是催化剂[C4mim]5PMo10V2O40,在优化后的条件下,苯的转化率可达到21%,苯酚的选择性在99%以上。而且,该催化剂具有很好的可重复使用性,连续使用五次后,苯的转化率和苯酚的选择性没有明显降低。 Aseriesof hybridmaterials ([C4mim]3+xPMo12-xVxO40, x=0, 1, 2)basedonV-substitutedphosphomolybdic acidH3+xPMo12-xVxO40 (x=0, 1, 2) and ionic liquid 1-butyl-3-methyl imidazolium bromide ([C4mim]Br) have been prepared by an anion-exchange method. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrophotometry (FT-IR) and UV-Vis diffuse reflectance spectra (UV-Vis DRS) analysis. The catalytic performances of the samples were tested in oxidation of benzene to produce phenol using H2O2 as the oxidant. The results showed that the hybrids[C4mim]3+xPMo12-xVxO40 exhibit much higher catalytic properties than both the corresponding moieties. In particular, under the optimized conditions, 21% of benzene conversion and 99%selectivity for phenol have been obtained with[C4mim]5PMo10V2O40. The sample also exhibits good reusability and was reused five times without a significant decrease in conversion and selectivity
References
[1]
3 Zheng Z. H. ; Guo W. L. ; Fan J. G. Petrochem. Technol 2004, 33, 1096.
[2]
5 Molinari R. ; Poerio T. ; Argurio P. Catal. Today 2006, 118, 52. doi: 10.1016/j.cattod.2005.11.089
[3]
6 Yuan C. ; Gao X. ; Pan Z. ; Li X. ; Tan Z. Catal. Commun 2015, 58, 215. doi: 10.1016/j.catcom.2014.08.004
[4]
陈练洪; 李稳宏; 李冬; 韩枫. 化工进展, 2005, 24, 236.
[5]
9 Gu L. Y. ; Gao B. J. ; Fang X. L. Acta Phys. -Chim. Sin. 2013, 29, 191. doi: 10.3866/PKU.WHXB201210266
26 Burrell A. K. ; Del Sesto R. E. ; Baker S. N. ; McCleskey T. M. ; Baker G. A. Green Chem 2007, 9, 449. doi: 10.1039/b615950h
[23]
31 Wang R. ; Jia D. ; Cao Y. Electrochim. Acta 2012, 72, 101. doi: 10.1016/j.electacta.2012.04.011
[24]
32 Zhao P. ; Zhang M. ; Wu Y. ; Wang J. Ind. Eng. Chem. Res 2012, 51, 6641. doi: 10.1021/ie202232j
[25]
33 Raj N. K. K. ; Ramaswamy A. V. ; Manikandan P. J. Mol. Catal. A: Chem. 2005, 227, 37. doi: 10.1016/j.molcata.2004.10.005
[26]
1 Zhang J. ; Tang Y. ; Li G. ; Hu C. Appl. Catal. A 2005, 278, 251. doi: 10.1016/j.apcata.2004.10.009
[27]
2 Wang M. ; Leitch M. ; Xu C. C. J. Ind. & Eng. Chem 2009, 15, 870. doi: 10.1016/j.jiec.2009.a)09.015
[28]
郑朝晖; 郭卫玲; 范金钢. 石油化工, 2004, 33, 1096.
[29]
8 Hajian R. ; Tangestaninejad S. ; Moghadam M. ; Mirkhani V. ; Mohammadpoor-Baltork I. ; Khosropour A. R. J. Coord. Chem 2011, 64, 4134. doi: 10.1080/00958972.2011.636038
[30]
12 Yuan C. ; Gao X. ; Pan Z. ; Li X. ; Tan Z. Catal. Commun 2015, 58, 215. doi: 10.1016/j.catcom.2014.08.004
[31]
13 Zhang F. ; Maiping G. ; Hanqingd G. ; Jun W. Chin. J. Chem. Eng 2007, 15, 895. doi: 10.1016/S1004-9541(08)60021-X
[32]
16 Chen J. ; Li J. ; Zhang Y. ; Gao S. Res. Chem. Intermed 2010, 36, 959. doi: 10.1007/s11164-010-0208-4
[33]
19 Zhao P. ; Leng Y. ; Zhang M. ; Wang J. ; Wu Y. ; Huang J. Chem. Commun 2012, 48, 5721. doi: 10.1039/c2cc31919e
[34]
20 Wang X. X. ; Xu H. L. ; Shen W. ; Ruhlmann L. ; Qin F. ; Sorgues S. ; Colbeau-Justin C. Acta Phys. -Chim. Sin 2013, 29, 1837. doi: 10.3866/PKU.WHXB201307024