全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201609133

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探究纳米多相反应过程的动力学行为,本文通过液相还原法可控合成了粒度为55 nm的立方体氧化亚铜(Cu2O)。基于纳米与块体Cu2O的区别,采用原位微量热技术获取Cu2O体系与HNO3反应过程的热动力学精细信息,结合热动力学原理及动力学过渡态理论计算得到Cu2O反应动力学参数,并建立立方体动力学模型讨论并佐证动力学实验结果。结果表明,纳米Cu2O的反应速率常数大于块体,而表观活化能、指前因子、活化焓、活化熵和活化Gibbs自由能均小于块体;随着温度的升高,纳米Cu2O的反应速率常数和活化Gibbs自由能均增大。动力学模型表明影响反应动力学参数的主要因素为:偏摩尔表面焓影响表观活化能,偏摩尔表面熵影响指前因子,偏摩尔表面Gibbs自由能影响反应速率常数。本文为纳米材料多相反应动力学参数的获取和分析应用提供了一种普适的理论模型和实验方法。
To investigate the kinetic behaviors of nanoparticle heterogeneous reactions, we introduced a liquidphase reduction method to control the synthesis of cubic cuprous oxide with a particle size of 55 nm. Based on the differences between nano-Cu2O and bulk Cu2O, in-situ microcalorimetry was used to acquire fine thermodynamic information of Cu2O systems in HNO3. The reaction kinetic parameters of Cu2O were calculated by a combination of thermodynamic principles and kinetic transition state theory, whose results are discussed and verified with the kinetic models of a cube that has been built. The results demonstrate that unlike the higher reaction rate constant than bulk Cu2O, nano-Cu2O shows lower kinetic parameters, including apparent activation energy, pre-exponential factor, activation enthalpy, activation entropy and activation Gibbs free energy. Both the reaction rate constant and activation Gibbs free energy increase with increasing temperature. The kinetic models show that the main factors affecting the reaction kinetic parameters are as follows:(i) the partial molar surface enthalpy affects the apparent activation energy; (ii) the partial molar surface entropy affects the preexponential factor; and (iii) the partial molar surface Gibbs free energy affects the reaction rate constant. We also provide a universal theoretical model and experimental method for gaining and analyzing kinetic parameters of nanomaterial heterogeneous reactions

References

[1]  3 Xue D. X. ; Belmabkhout Y. ; Shekhah O. ; Jiang H. ; Adil K. ; Cairns A. J. ; Eddaoudi M. J. Am. Chem. Soc. 2015, 137 (15), 5034. doi: 10.1021/ja5131403
[2]  5 Bai S. ; Jiang J. ; Zhang Q. ; Xiong Y. Chem. Soc. Rev. 2015, 44 (10), 2893. doi: 10.1039/C5CS00064E
[3]  6 Wagner C. E. ; Macedo L. J. ; Opdahl A. Anal. Chem. 2015, 87 (15), 7825. doi: 10.1021/acs.analchem.5b01518
[4]  11 Li X. X. ; Huang Z. Y. ; Zhong L. Y. ; Wang T. H. ; Tan X. C. Chin. Sci. Bull. 2014, 59 (25), 2490. doi: 10.1360/N972014-00332
[5]  12 Luo X. L. ; Wang M. J. ; Yun L. ; Yang J. ; Chen Y. S. J. Phys. Chem. Solids 2016, 90, 1. doi: 10.1016/j.jpcs.2015.11.005
[6]  薛永强; 杜建平; 王沛东; 王志忠. 物理化学学报, 2005, 21 (7), 758. doi: 10.3866/PKU.WHXB20050712
[7]  15 Xue Y. Q. ; Xia X. Y. ; Cui Z. X. ; Shi J. Q. J. Comput. Theor. Nanosci. 2014, 11 (9), 1927. doi: 10.1166/jctn.2014.3589
[8]  19 Hu R. Z. ; Zhao F. Q. ; Gao H. X. ; Song J. R. Fundamentals and Applications of CalorimetryScience Press:Beijing, 2011.
[9]  高胜利; 陈三平; 胡荣祖; 李焕勇; 史启祯. 无机化学学报, 2002, 18 (4), 362.
[10]  24 Xue Y. Q. ; Wang X. F. ; Cui Z. X. Prog. React. Kinet. Mech. 2011, 36 (4), 329. doi: 10.3184/146867811X13103063934186
[11]  7 Mao X. ; Tian W. ; Wu J. ; Rutledge G. C. ; Hatton T. A. J. Am. Chem. Soc. 2015, 137 (3), 1348. doi: 10.1021/ja512224g
[12]  9 Ning H. B. ; Li Z. R. ; Li X. Y. Acta Phys.-Chim. Sin. 2016, 32 (1), 131. doi: 10.3866/PKU.WHXB201512151
[13]  甯红波; 李泽荣; 李象远. 物理化学学报, 2016, 32 (1), 131. doi: 10.3866/PKU.WHXB201512151
[14]  13 Chaudhary A. L. ; Sheppard D. A. ; Paskevicius M. ; Pistidda C. ; Dornheim M. ; Buckley C. E. Acta Mater. 2015, 95, 244. doi: 10.1016/j.actamat.2015.05.046
[15]  刘作娇; 范高超; 黄叶玲; 覃小幸; 黄在银; 谭学才; 钟莲云; 刘绍刚; 廖艳娟. 中国科学:化学, 2015, 45 (8), 855. doi: 10.1360/N032014-00304
[16]  胡荣祖; 赵凤起; 高红旭; 宋纪蓉. 量热学基础与应用,北京:科学出版社, 2011, 1- 10.
[17]  20 Gao S. L. ; Chen S. P. ; Hu R. Z. ; Li H. Y. ; Shi Q. Z. Chin. J. Inorg. Chem. 2002, 18 (4), 362.
[18]  21 Pan L. ; Zou J. J. ; Zhang T. R. ; Wang S. B. ; Wang L. ; Zhang X.W. J. Phys. Chem. C 2013, 118 (30), 16335. doi: 10.1021/jp408056k
[19]  22 Li C. ; Li Y. B. ; Delaunay J. J. ACS Appl. Mater. Interfaces 2013, 6 (1), 480. doi: 10.1021/am404527q
[20]  23 Wu L. L. ; Tsui L. K. ; Swami N. ; Zangari G. J. Phys. Chem. C 2010, 114 (26), 11551. doi: 10.1021/jp103437y
[21]  25 Fu Q. S. ; Cui Z. X. ; Xue Y. Q. Eur. Phys. J. Plus 2015, 130 (10), 212. doi: 10.1140/epjp/i2015-15212-4
[22]  18 Liu Z. J. ; Fan G. C. ; Huang Y. L. ; Qin X. X. ; Huang Z. Y. ; Tan X. C. ; Zhong L. Y. ; Liu S. G. ; Liao Y. J. Sci. Sin. Chim. 2015, 45 (8), 855. doi: 10.1360/N032014-00304
[23]  26 Fu Q. S. ; Xue Y. Q. ; Cui Z. X. ; Wang M. F. J. Nanomater. 2014, 2014, 132. doi: 10.1155/2014/856489
[24]  1 Tian N. ; Zhou Z. Y. ; Sun S. G. ; Ding Y. ; Wang Z. L. Science 2007, 316 (5825), 732. doi: 10.1126/science.1140484
[25]  2 Sun S. G., Chen S. L. Electrocatalysis; Chemical IndustryPress: Beijing, 2013; pp 12-20.
[26]  孙世刚,陈胜利.电催化.北京:化学工业出版社, 2013: 12-20.
[27]  4 Gao J. Y. Anal. Chem. 2012, 84 (24), 10671. doi: 10.1021/ac302297a
[28]  8 Hariadi R. F. ; Yurke B. ; Winfree E. Chem. Sci. 2015, 6 (4), 2252. doi: 10.1039/C3SC53331J
[29]  10 Hashemi H. ; Babaee S. ; Mohammadi A. H. ; Naidoo P. ; Ramjugernath D. J. Chem. Thermodyn. 2015, 82, 47. doi: 10.1016/j.jct.2014.10.017
[30]  李星星; 黄在银; 钟莲云; 王腾辉; 谭学才. 科学通报, 2014, 59 (25), 2490. doi: 10.1360/N972014-00332
[31]  14 Xue Y. Q. ; Du J. P. ; Wang P. D. ; Wang Z. Z. Acta Phys.-Chim. Sin. 2005, 21 (7), 758. doi: 10.3866/PKU.WHXB20050712
[32]  16 Wang S. T. ; Wen Y. Z. ; Cui Z. X. ; Xue Y. Q. J. Nanopart. Res. 2016, 18 (15), 1. doi: 10.1007/s11051-016-3324-2
[33]  17 Fan G. C. ; Ma Z. ; Huang Z. Y. J. Therm. Anal. Calorim. 2013, 116 (1), 485. doi: 10.1007/s10973-013-3515-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133