全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201609231

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文合成并表征了三种不同烷基链长度的季铵盐型阳离子表面活性剂:N-十二烷基-N-(2-羟乙基)-N,N-二甲基溴化铵(DHDAB)、N-十四烷基-N-(2-羟乙基)-N,N-二甲基溴化铵(THDAB)、N-十六烷基-N-(2-羟乙基)-N,N-二甲基溴化铵(CHDAB)。采用荧光光谱法、紫外-可见光谱法、动态光散射法和等温滴定量热法对三种表面活性剂与牛血清白蛋白(BSA)的相互作用进行研究。荧光光谱研究表明,三种表面活性剂主要与BSA分子内的色氨酸残基发生相互作用,导致蛋白质的构象发生变化,且表面活性剂烷基链越长,与BSA的相互作用就越强。BSA荧光猝灭的主要原因是静态猝灭,紫外光谱实验同样验证了静态猝灭的存在。等温滴定量热法结果表明低浓度的表面活性剂与BSA主要发生静电作用和疏水作用而放热。动态光散射结果表明高浓度的表面活性剂会使BSA结构被破坏。本文揭示了表面活性剂与BSA相互作用的机理,为表面活性剂的广泛应用提供了理论基础。
UV-visible (UV-Vis) absorption spectroscopy, fluorescence spectroscopy (FL), dynamic light scattering (DLS) and isothermal titration calorimetry (ITC) were used to study the interactions between bovine serum albumin (BSA) and the three quaternary ammonium surfactants N-dodecyl-N-(2-hydroxyethyl)-N, Ndimethyl ammonium bromide (DHDAB), N-tetradecyl-N-(2-hydroxyethyl)-N, N-dimethyl ammonium bromide (THDAB) and N-cetyl-N-(2-hydroxyethyl)-N, N-dimethyl ammonium bromide (CHDAB). These surfactants quenched the intrinsic fluorescence of BSA, with longer alkyl chains resulting in more significant quenching. This was attributed to static quenching. Further evidence of static quenching was provided by UV-Vis absorption spectroscopy. The particle size of BSA was found to initially increase and then decrease with increasing surfactant concentration. The concentration of surfactant changed the type of interaction mode. This work revealed the mechanism and binding characteristics between surfactants and protein, and provides the basis for further applications of surfactants

References

[1]  9 Miller R. ; Fainerman V. B. ; Makievski A. V. ; Kr?gel J. ; Grigoriev D. O. ; Kazakov V. N. ; Sinyachenko O. V. Adv. Colloid Interface Sci. 2000, 86, 39. doi: 10.1016/S0001-8686(00)00032-4
[2]  15 Kwaambwa H. M. ; Maikokera R. Colloids Surf. B: Biointerfaces 2008, 64, 118. doi: 10.1016/j.colsurfb.2008.01.014
[3]  29 Gauthier T. D. ; Shane E. C. ; Guerin W. F. ; Seitz W. R. ; Grant C. L. Environ. Sci. Technol. 1986, 20, 1162. doi: 10.1021/es00153a012
[4]  30 Marras S. A. ; Kramer F. R. ; Tyagi S. Nucleic. Acids. Res. 2002, 30, 122. doi: 10.1093/nar/gnf121
[5]  34 Seetharamappa J. ; Kamat B. P. Chem. Pharm. Bul. 2004, 52, 1053. doi: 10.1248/cpb.52.10531
[6]  35 Eftink M. R. ; Ghiron C. A. Anal. Biochem. 1981, 114, 199. doi: 10.1016/0003-2697(81)90474-7
[7]  36 Ware W. R. J. Phys. Chem. 1962, 66, 455. doi: 10.1021/j100809a020
[8]  37 Papadopoulou A. ; Green R. J. ; Frazier R. A. J. Agric. Food. Chem. 2005, 53, 158. doi: 10.1021/jf048693g
[9]  38 Barik A. ; Priyadarsini K. I. ; Mohan H. Photochem. Photobiol. 2003, 77, 597. doi: 10.1562/0031-8655(2003)077<0597:PSOBOC>2.0.CO;2
[10]  14 Gelamo E. L. ; Tabak M. Spectrochim. Acta. A 2000, 56, 2255. doi: 10.1016/S1386-1425(00)00313-9
[11]  1 Fainerman V. B. ; Zholob S. A. ; Leser M. ; Michel M. ; Miller R. J. Colloid Interface Sci. 2004, 274, 496. doi: 10.1016/j.jcis.2003.12.057
[12]  21 Gentili P. L. ; Ortica F. ; Favaro G. J. Phys. Chem. B 2008, 112, 16793. doi: 10.1021/jp805922g
[13]  24 Zhao L. ; Liu R. ; Zhao X. ; Yang B. ; Gao C. ; Hao X. ; Wu Y. Sci. Total. Environ 2009, 47, 5019. doi: 10.1016/j.scitotenv.2009.05.052
[14]  25 Reynolds J. A. ; Herbert S. ; Polet H. ; Steinhardt J. Biochemistry 1967, 6, 937. doi: 10.1021/bi00855a038
[15]  26 Mehta S. K. ; Bhasin K. K. ; Kumar A. J. Colloid Interface Sci. 2008, 323, 426. doi: 10.1016/j.jcis.2008.04.026
[16]  27 Lissi E. ; Abuin E. ; Lanio M. E. ; Alvarez C. J. Biochem. Biophys. Methods 2002, 50, 261. doi: 10.1016/S0165-022X(01)00237-8
[17]  28 Wang Y. Q. ; Zhang H. M. ; Zhang G. C. ; Tao W. H. ; Tang S. H. J. Lumin. 2007, 126, 211. doi: 10.1016/j.jlumin.2006.06.013
[18]  31 Fraiji L. K. ; Hayes D. M. ; Werner T. C. J. Chem. Educ. 1992, 69, 424. doi: 10.1021/ed069p424
[19]  33 Gray J. J. Curr. Opin. Struc. Biol. 2004, 14, 110. doi: 10.1016/j.sbi.2003.12.001
[20]  40 Martin V. I. ; Rodriguez A. ; Maestre A. ; Moya M. L. Langmuir 2013, 29, 7629. doi: 10.1021/la400789k
[21]  41 Zhang Y. Z. ; Zhou B. ; Liu Y. X. ; Zhou C. X. ; Ding X. L. ; Liu Y. J. Fluoresc. 2008, 18, 109. doi: 10.1007/s10895-007-0247-4
[22]  43 Zhou T. ; Ao M. ; Xu G. ; Liu T. ; Zhang J. J. Colloid Interface Sci. 2012, 389, 175. doi: 10.1016/j.jcis.2012.08.067
[23]  44 Ojha B. ; Das G. Chem. Phys. Lipids 2011, 164, 144. doi: 10.1016/j.chemphyslip.2010.12.004
[24]  45 Jaiswal S. ; Mondal R. ; Paul D. ; Mukherjee S. Chem. Phys. Lett. 2016, 646, 18. doi: 10.1016/j.cplett.2015.12.051
[25]  46 Ró?ycka-Roszak B. ; Wo?niak E. ; Misiak P. ; Fr?ckowiak R. ; Wilk K. A. J. Chem. Thermodyn. 2013, 66, 1. doi: 10.1016/j.jct.2013.06.012
[26]  48 Xiang J. ; Fan J. B. ; Chen N. ; Chen J. ; Liang Y. Colloids Surf. B: Biointerf. 2006, 49, 175. doi: 10.1016/j.colsurfb.2006.03.015
[27]  49 Asker D. ; Weiss J. ; McClements D. J. Langmuir 2009, 25, 116. doi: 10.1021/la803038w
[28]  50 Bordbar A. K. ; Taheri-Kafrani A. ; Mousavi H. A. ; Haertle T. Arch. Biochem. Biophys. 2008, 470, 103. doi: 10.1016/j.abb.2007.11.015
[29]  51 Misra P. K. ; Dash U. ; Maharana S. Colloids Surf. A: Physicochem. Eng. Aspects 2015, 483, 36. doi: 10.1016/j.colsurfa.2015.06.052
[30]  4 Turro N. J. ; Lei X. G. ; Ananthapadmanabhan K. P. ; Aronson M. Langmuir 1995, 11, 2525. doi: 10.1021/la00007a035
[31]  6 Mackie A. ; Wilde P. Adv. Colloid Interface Sci. 2005, 117, 3. doi: 10.1016/j.cis.2005.04.002
[32]  7 Chi E. Y. ; Krishnan S. ; Randolph T.W. ; Carpenter J. F. Pharm. Res. 2003, 20, 1325. doi: 10.1023/A:1025771421906
[33]  8 De S. ; Girigoswami A. ; Das S. J. Colloid Interface Sci. 2005, 285, 562. doi: 10.1016/j.jcis.2004.12.022
[34]  10 Coke M. ; Wilde P. J. ; Russell E. J. ; Clark D. C. J. Colloid Interface Sci. 1990, 138, 489. doi: 10.1016/0021-9797(90)90231-C
[35]  11 McCormack F. X. ; King T. E. ; J r. ; Voelker D. R. ; Robinson P.C. ; Mason R. J. American Review of Respiratory Disease 1991, 144, 160. doi: 10.1164/ajrccm/144.1.160
[36]  12 Bordbar A. K. ; Taheri-Kafrani A. Colloids Surf. B: Biointerfaces 2007, 55, 84. doi: 10.1016/j.colsurfb.2006.11.012
[37]  13 Wang Y. ; Guo R. ; Xi J. J. Colloid Interface Sci. 2009, 331, 470. doi: 10.1016/j.jcis.2008.12.020
[38]  16 Klajnert B. ; Bryszewska M. Bioelectrochemistry 2002, 55, 33. doi: 10.1016/S1567-5394(01)00170-0
[39]  17 Carvalho C. M. L. ; Cabral J. M. S. Biochimie 2000, 82, 1063. doi: 10.1016/S0300-9084(00)01187-1
[40]  18 Rozema D. ; Gellman S. H. J. Am. Chem. Soc. 1995, 117, 2373. doi: 10.1021/ja00113a036
[41]  19 Al-Shakhshir R. H. ; Regnier F. E. ; White J. L. ; Hem S. L. Vaccine 1995, 13, 41. doi: 10.1016/0264-410X(95)80009-3
[42]  20 Ahmad A. L. ; Hairul N. A. H. Sep. Purif. Technol. 2009, 66, 273. doi: 10.1016/j.seppur.2008.12.027
[43]  2 Gull N. ; Chodankar S. ; Aswal V. K. ; Sen P. ; Khan R. H. Colloids Surf. B: Biointerfaces 2009, 69, 122. doi: 10.1016/j.colsurfb.2008.11.009
[44]  3 Mehta S. K. ; Bhasin K. K. ; Kumar A. Colloids Surf. A: Physicochem. Eng. Aspects 2009, 346, 195. doi: 10.1016/j.colsurfa.2009.06.016
[45]  22 Deep S. ; Ahluwalia J. C. Phys. Chem. Chem. Phys. 2001, 3, 4583. doi: 10.1039/B105779K
[46]  32 Lakowicz J. R. ; Weber G. Biochemistry 1973, 12, 416. doi: 10.1021/ed069p424
[47]  39 Congdon R.W. ; Muth G.W. ; Splittgerber A. G. Anal. Biochem. 1993, 213, 407. doi: 10.1006/abio.1993.1439
[48]  5 Mehan S. ; Aswal V. K. ; Kohlbrecher J. Langmuir 2014, 30, 9941. doi: 10.1021/la502410v
[49]  23 Madaeni S. S. ; Rostami E. Chem. Eng. Technol. 2008, 31, 1265. doi: 10.1002/ceat.200700496
[50]  42 Hu Y. J. ; Liu Y. ; Jiang W. ; Zhao R. M. ; Qu S. S. J. Photochem. Photobiol. B. 2005, 80, 235. doi: 10.1016/j.jphotobiol.2005.04.005
[51]  47 Covis R. ; Vives T. ; Gaillard C. ; Benoit M. ; Benvegnu T. Carbohydrate Polymers 2015, 121, 436. doi: 10.1016/j.carbpol.2015.01.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133