全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 


DOI: 10.3866/PKU.WHXB201509183

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据密度泛函理论,分子的电子密度确定了该体系基态下的所有性质,其中包括结构和反应活性.如何运用电子密度泛函有效地预测分子反应活性仍然是一个有待解决的难题.密度泛函活性理论(DFRT)倾力打造这样一个理论和概念架构,使得运用电子密度以及相关变量准确地预测分子的反应特性成为可能.信息理论方法的香农熵和费舍尔信息就是这样的密度泛函,研究表明,它们均可作为反应活性的有效描述符.本文将在DFRT框架中介绍和引进三个密切相关的描述符, Rényi熵、Tsallis熵和Onicescu信息能.我们准确地计算了它们在一些中性原子和分子中的数值并讨论了它们随电子数量和电子总能量的变化规律.此外,以第二阶Onicescu信息能为例,在分子和分子中的原子两个层面上,系统地考察了其随乙烷二面角旋转的变化模式.这些新慨念的引入将为我们深入洞察和预测分子的结构和反应活性提供额外的描述工具.
Density functional theory dictates that the electron density determines everything in a molecular system's ground state, including its structure and reactivity properties. However, little is known about how to use density functionals to predict molecular reactivity. Density functional reactivity theory is an effort to fill this gap: it is a theoretical and conceptual framework through which electron-related functionals can be used to accurately predict structure and reactivity. Such density functionals include quantities from the information-theoretic approach, such as Shannon entropy and Fisher information, which have shown great potential as reactivity descriptors. In this work, we introduce three closely related quantities: Rényi entropy, Tsallis entropy, and Onicescu information energy. We evaluated these quantities for a number of neutral atoms and molecules, revealing their scaling properties with respect to electronic energy and the total number of electrons. In addition, using the example of second-order Onicescu information energy, we examined how its patterns change with the angle of dihedral rotation of an ethane molecule at both the molecular level and atoms-in-molecules level. Using these quantities as additional reactivity descriptors, researchers can more accurately predict the structure and reactivity of molecular systems

References

[1]  24 Hirshfeld F. Theor. Chim. Acc 1977, 44, 129. doi: 10.1007/BF00549096
[2]  25 Lu T. ; Chen F. J. Comput. Chem 2012, 33, 580. doi: 10.1002/jcc.v33.5
[3]  27 Zhao Y. ; Truhlar D. G. Theor. Chem. Acc 2008, 120, 215. doi: 10.1007/s00214-007-0310-x
[4]  1 Parr R. G. ; Yang W. Density-Functional Theory of Atoms and Molecules Clarendon Press: Oxford, England, 1989.
[5]  3 Chattaraj P. K. ; Sarkar U. ; Roy D. R. Chem. Rev 2006, 106, 2065. doi: 10.1021/cr040109f
[6]  4 Liu S. B. Acta Phys. -Chim. Sin 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332
[7]  刘述斌. 物理化学学报, 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332
[8]  5 Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379. doi: 10.1002/bltj.1948.27.issue-3
[9]  6 Fisher R. A. Proc. Cambridge Philos. Soc 1925, 22, 700. doi: 10.1017/S0305004100009580
[10]  7 Ghosh S. K. ; Berkowitz M. ; Parr R. G. Proc. Natl. Acad. Sci. U. S. A 1984, 81, 8028. doi: 10.1073/pnas.81.24.8028
[11]  10 Nalewajski R. F. ; Parr R. G. J.Phys. Chem. A 2001, 105, 7391. doi: 10.1021/jp004414q
[12]  11 Rong C. Y. ; Lu T. ; Liu S. B. J.Chem. Phys 2014, 140, 024109. doi: 10.1063/1.4860969
[13]  12 Liu S. B. ; Rong C. Y. ; Lu T. J.Phys. Chem. A 2014, 118, 3698. doi: 10.1021/jp5032702
[14]  14 Liu S. B. J.Chem. Phys 2014, 141, 194109. doi: 10.1063/1.4901898
[15]  周夏禹; 荣春英; 卢天; 刘述斌. 物理化学学报, 2014, 30, 2055. doi: 10.3866/PKU.WHXB201409193
[16]  17 Liu S. B. J.Phys. Chem. A 2015, 119, 3107. doi: 10.1021/acs.jpca.5b00443
[17]  18 Wu W. J. ; Wu Z. M. ; Rong C. Y. ; Lu T. ; Huang Y. ; Liu S. B. J.Phys. Chem. A 2015, 119, 8216.
[18]  20 Tsallis C. J. Stat. Phys 1988, 52, 479. doi: 10.1007/BF01016429
[19]  2 Geerlings P. ; DeProft F. ; Langenaeker W. Chem. Rev 2003, 103, 1793. doi: 10.1021/cr990029p
[20]  8 Kullback S. ; Leibler R. A. Ann. Math. Stat 1951, 22, 79. doi: 10.1214/aoms/1177729694
[21]  9 Nalewajski R. F. ; Parr R. G. Proc. Natl. Acad. Sci. U. S. A 2000, 97, 8879. doi: 10.1073/pnas.97.16.8879
[22]  13 Rong C. Y. ; Lu T. ; Chattaraj P. K. ; Liu S. B. Indian J.. Chem., Sect. A 2014, 53, 970.
[23]  15 Zhou X. Y. ; Rong C. Y. ; Lu T. ; Liu S. B. Acta Phys. -Chim. Sin 2014, 30, 2055. doi: 10.3866/PKU.WHXB201409193
[24]  16 Rong C. Y. ; Lu T. ; Ayers P. W. ; Chattaraj P. K. ; Liu S. B. Phys. Chem. Chem. Phys 2015, 17, 4977.
[25]  19 Ré nyi, A. Probability Theory; North-Holland: Amsterdam, 1970.
[26]  21 Onicescu O. C. R. Acad. Sci. Paris A 1966, 263, 25.
[27]  22 Bader R. F. W. Atoms in Molecules: A Quantum Theory Oxford University Press: Oxford, England, 1990.
[28]  23 Becke A. D. J.Chem. Phys 1988, 88, 2547. doi: 10.1063/1.454033
[29]  26 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09, Revision D.01; Gaussian Inc.:Wallingford, CT, 2009.
[30]  28 Ditchfield R. ; Hehre W. J. ; Pople J. J.Chem. Phys 1971, 54, 724. doi: 10.1063/1.1674902
[31]  29 Dunning T. H. Jr. J.Chem. Phys 1989, 90, 1007.
[32]  30 Liu S. B. J. J.Phys. Chem. A 2013 2013, 117, 962. doi: 10.1021/jp312521z
[33]  31 Liu S. B. ; Parr R. G. ; Nagy A. Phys. Rev. A 1995, 52, 2645. doi: 10.1103/PhysRevA.52.2645
[34]  32 Liu S. B. Int. J. Quantum Chem 2006, 106, 1762.
[35]  33 Liu S. B. J. Chem. Phys 2007, 126, 191107. doi: 10.1063/1.2741244

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133