以天然石墨为原料,采用改进的Hummers法制备氧化石墨.然后采用简单的一步化学还原法在乙二醇(EG)中同时还原氧化石墨烯(GO)和H2PtCl6制备高分散的铂/还原态氧化石墨烯(Pt/RGO)催化剂.采用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)和透射电子显微镜(TEM)对催化剂的微结构、组成和形貌进行表征.结果表明, GO已被还原成RGO, Pt纳米粒子均匀分散在RGO表面,粒径约为2.3 nm.采用循环伏安法和计时电流法评价催化剂对甲醇氧化的电催化性能,测试结果表明, Pt/RGO催化剂对甲醇氧化的电催化活性和稳定性与Pt/C和Pt/CNT相比有了很大提高.另外其对甲醇电催化氧化的循环伏安图中正扫峰电流密度(If)和反扫峰电流密度(Ib)的比值高达1.3,分别是Pt/C和Pt/CNT催化剂的2.2和1.9倍,表明Pt/RGO催化剂具有高的抗甲醇氧化中间体COad的中毒能力. In this study, graphite oxide was prepared from natural graphite powder using a modified Hummers method. Well-dispersed Pt nanoparticles were synthesized on reduced graphene oxide (RGO) via a simple one-step chemical reduction method in ethylene glycol (EG) by simultaneous reduction of graphene oxide (GO) and chloroplatinic acid. The microstructure, composition, and morphology of the synthesized materials were characterized with Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). It is shown that the GO was reduced to RGO, and the Pt nanoparticles with an average particle size of 2.3 nm were well dispersed on the surface of RGO. The catalytic performance of the catalysts for methanol oxidation was investigated by cyclic voltammetry and amperometric method, which indicated that Pt/RGO catalyst had higher electrocatalytic activity and stability for the oxidation of methanol than the Pt/C and Pt/CNT catalysts. The If/Ib of Pt/RGO reached 1.3, which was 2.2 and 1.9 times as high as those of Pt/C and Pt/CNT catalysts, respectively, revealing that Pt/RGO had high poisoning tolerance to the COad intermediate species produced in the methanol oxidation reaction
References
[1]
2 Hamel C. ; Garbarino S. B. ; Irissou E. R. ; Bichat M. P. ; Guay D. J. Phys. Chem. C 2010, 114 (44), 18931. doi: 10.1021/jp105706y
[2]
17 Kakaei K. ; Zhiani M. J. Power Sources 2013, 225 (3), 356.
[3]
18 Kakati N. ; Maiti J. ; Lee S. H. ; Yoon Y. S. Int. J. Hydrog. Energy 2012, 37 (24), 19055. doi: 10.1016/j.ijhydene.2012.09.083
[4]
20 Abanin D. A. ; Morozov S. V. ; Ponomarenko L. A. ; Gorbachev R. V. ; Mayorov A. S. ; Katsnelson M. I. ; Watanabe K. ; Taniguchi T. ; Novoselov K. S. ; Levitov L. S. ; Geim A. K. Science 2011, 332 (6027), 328. doi: 10.1126/science.1199595
[5]
23 Chen H. ; Duan J. ; Zhang X. ; Zhang Y. ; Guo C. ; Nie L. ; Liu X. Mater. Lett 2014, 126 (7), 9.
[6]
27 Chien C. C. ; Jeng K. T. Mater. Chem. Phys 2006, 99 (1), 80. doi: 10.1016/j.matchemphys.2005.09.080
[7]
30 Ji Z. ; Shen X. ; Zhu G. ; Chen K. ; Fu G. ; Tong L. J. Electroanal. Chem 2012, 682 (8), 95.
[8]
19 Jung J. ; Park B. ; Kim J. Nanoscale Res. Lett 2012, 7 (1), 1. doi: 10.1186/1556-276X-7-1
[9]
21 Bragaru A. ; Vasile E. ; Obreja C. ; Kusko M. ; Danila M. ; Radoi A. Mater. Chem. Phys 2014, 146 (3), 538. doi: 10.1016/j.matchemphys.2014.04.012
[10]
22 Jothi P. R. ; Kannan S. ; G V. J. Power Sources 2015, 277 (3), 350.
[11]
25 Hu Y. ; Wu P. ; Zhang H. ; Cai C. Electrochim. Acta 2012, 85 (15), 314.
[12]
26 Hassan H. M. A. ; Abdelsayed V. ; Khder A. E. R. S. ; AbouZeid K. M. ; Terner J. ; El-Shall M. S. ; Al-Resayes S. I. ; El-Azhary A. A. J. Mater. Chem 2009, 19 (23), 3832. doi: 10.1039/b906253j
[13]
28 Liu Z. ; Lee J. Y. ; Chen W. ; Han M. ; Gan L. M. Langmuir 2003, 20 (1), 181.
[14]
1 Zhao H. B. ; Li L. ; Yang J. ; Zhang Y. M. Electrochem. Commun 2008, 10 (10), 1527. doi: 10.1016/j.elecom.2008.07.047
[15]
3 Lee S. H. ; Kakati N. ; Jee S. H. ; Maiti J. ; Yoon Y. S. Mater. Lett 2011, 65 (21-22), 3281.
[16]
4 Navaee A. ; Salimi A. ; Soltanian S. ; Servati P. J. Power Sources 2015, 277 (3), 268.
[17]
5 Zhou X. ; Gan Y. ; Du J. ; Tian D. ; Zhang R. ; Yang C. ; Dai Z. J. Power Sources 2013, 232 (6), 310.
[18]
6 Cai Z. X. ; Liu C. C. ; Wu G. H. ; Chen X. M. ; Chen X. Electrochim. Acta 2014, 127 (5), 377.
[19]
7 Du S. ; Lu Y. ; Steinberger-Wilckens R. Carbon 2014, 79 (11), 346.
[20]
8 Gao H. ; Liao S. ; Zeng J. ; Xie Y. J. Power Sources 2011, 196 (1), 54. doi: 10.1016/j.jpowsour.2010.07.040
[21]
9 Liu A. ; Yuan M. ; Zhao M. ; Lu C. ; Zhao T. ; Li P. ; Tang W. J. Alloy. Compd 2014, 586 (2), 99.
[22]
10 Zhang Y. ; Chang G. ; Shu H. ; Oyama M. ; Liu X. ; He Y. J. Power Sources 2014 2014, 262 (9), 279.
[23]
11 Xu C. ; Hou J. ; Pang X. ; Li X. ; Zhu M. ; Tang B. Int. J. Hydrog. Energy 2012, 37 (14), 10489. doi: 10.1016/j.ijhydene.2012.04.041
[24]
12 Liang Q. ; Zhang L. ; Cai M. ; Li Y. ; Jiang K. ; Zhang X. ; Shen P. K. Electrochim. Acta 2013, 111 (11), 275.
[25]
13 Lu J. ; Zhou Y. ; Tian X. ; Xu X. ; Zhu H. ; Zhang S. ; Yuan T. Appl. Surf. Sci 2014, 317 (10), 284.
[26]
14 Liu C. S. ; Liu X. C. ; Wang G. C. ; Liang R. P. ; Qiu J. D. J. Electroanal. Chem 2014, 728 (8), 41.
[27]
15 Liu H. ; Song C. ; Zhang L. ; Zhang J. ; Wang H. ; Wilkinson D. P. J. Power Sources 2006, 155 (2), 95. doi: 10.1016/j.jpowsour.2006.01.030
[28]
16 Miko?ajczuk A. ; Borodzinski A. ; Kedzierzawski P. ; Stobinski L. ; Mierzwa B. ; Dziura R. Appl. Surf. Sci 2011, 257 (19), 8211. doi: 10.1016/j.apsusc.2011.04.078
[29]
24 Huang H. ; Chen H. ; Sun D. ; Wang X. J. Power Sources 2012, 204 (4), 46.
[30]
29 Zhang J. ; Yang H. ; Shen G. ; Cheng P. ; Zhang J. ; Guo S. Chem. Commun 2010, 46 (7), 1112. doi: 10.1039/B917705A
[31]
31 Georgakilas V. ; Gournisb D. ; Tzitziosa V. ; Pasquato L. ; Guldie D. M. ; Prato M. J. Mater. Chem 2007, 17 (26), 2679. doi: 10.1039/b700857k
[32]
32 Yoo E. ; Okata T. ; Akita T. ; Kohyama M. ; Nakamura J. ; Honma I. Nano Lett 2009, 9 (6), 2255. doi: 10.1021/nl900397t
[33]
33 Zhou Y. K. ; He B. L. ; Zhou W. J. ; Huang J. ; Li X. H. ; Wu B. ; Li H. L. Electrochim. Acta 2004, 49 (2), 257. doi: 10.1016/j.electacta.2003.08.007