运用分子动力学模拟方法研究了常温下较大的钯团簇以不同初始速度撞击不同硬度基板的微观过程,着重分析了沉积形貌的变化、团簇的嵌入深度和原子的扩散程度、基板碰撞接触区域的温度演变以及碰撞过程中团簇与基板间的能量转化,获得了沉积过程中变形形貌、结构特征及能量转化随团簇尺寸、初始速度及基板材质的变化规律.并进一步探究了第二颗团簇以不同时刻沉积时前一团簇的变形形貌及基板接触区域温度变化的特点,发现短时间间隔下第二颗团簇的沉积更有利于团簇与基板的结合. Using molecular dynamics simulations, we investigated the microscopic processes of large palladium clusters deposited on Pd/Ag substrates at different incident velocities at the room temperature. We studied the impact process by analyzing the deposited morphology, embedded depth, diffusion degree of the cluster atoms, temperature variation in the collision region on the substrate, and energy conversion between the cluster and substrate. This analysis yielded the change rules of the deposited morphology, structural characteristics, and energy conversion for various cluster sizes, incident velocities, and substrates. Furthermore, we explored the deformation morphology of the first deposited cluster and the temperature of the collision contact region for various impact times of the second cluster. Shortening the impact time of the second cluster caused the clusters and substrate to better combine
References
[1]
1 Abdollahi M. ; Yu J. ; Liu P. K. T. ; Ciora R. ; Sahimi M. ; Tsotsis T. T. J. Membr. Sci 2012, 390 (8), 32.
[2]
9 Lewis A. E. ; Zhao H. ; Syed H. ; Wolden C. A. ; Way J. D. J. Membr. Sci 2014, 465, 167. doi: 10.1016/j.memsci.2014.04.022
[3]
14 Lee S. C. ; Yu B. D. ; Kim D. Y. ; Nong M. H. J. Cryst. Growth 2002, 242 (3), 463.
[4]
19 Vandoni G. ; Félix C. ; Massobrio L. Phys. Rev. B 1996, 54 (3), 1553. doi: 10.1103/PhysRevB.54.1553
[5]
26 Hong Z. H. ; Hwang S. F. ; Fang T. H. Surf. Sci 2011, 605, 46. doi: 10.1016/j.susc.2010.09.020
[6]
35 Kang J. W. ; Hwang H. J. Phys. Rev. B 2001, 64 (1), 167.
[7]
2 Yun S. ; Oyama S. T. J. Membr. Sci 2011, 375, 28. doi: 10.1016/j.memsci.2011.03.057
[8]
3 Mitsui T. ; Rose M. K. ; Fomin E. ; Ogletree D. F. ; Salmeron M. Nature 2003, 422 (6933), 705. doi: 10.1038/nature01557
[9]
4 Teschner D. ; Revay Z. ; Borsodi J. ; Havecker M. ; Knop-Gericke A. ; Schlogl R. ; Milroy D. ; Jackson S. D. ; Torres D. ; Sautet P. Angew. Chem. Int. Edit 2008, 47 (48), 9274. doi: 10.1002/anie.v47:48
[10]
7 Edlund D. J. ; Mccarthy J. J. Membr. Sci 1995, 107, 147. doi: 10.1016/0376-7388(95)00110-X
[11]
10 Yan S. ; Maeda H. ; Kusakabe K. ; Morooka S. Ind. Eng. Chem. Res 1994, 33 (3), 616. doi: 10.1021/ie00027a019
[12]
20 Alamanova D. ; Grigoryan V. G. ; Springborg M. Surf. Sci 2008, 602 (7), 1413. doi: 10.1016/j.susc.2008.02.002
[13]
29 Chen C. K. ; Chang S. C. Nanotechnology 2006, 17 (20), 5051. doi: 10.1088/0957-4484/17/20/004
[14]
30 Berendsen H. J. C. ; Postma J. P. M. ; Gunsteren W. F. V. ; Dinola A. ; Haak J. R. J. Chem. Phys 1984, 81 (8), 3684. doi: 10.1063/1.448118
[15]
31 Hu Y. ; Sinnott S. B. J. Comput. Phys 2004, 200 (1), 251. doi: 10.1016/j.jcp.2004.03.019
[16]
32 J?rvi T. T. ; Kuronen A. ; Meinander K. ; Nordlund K. ; Albe K. Phys. Rev. B 2007, 75 (11), 115422. doi: 10.1103/PhysRevB.75.115422
[17]
33 Andersen H. C. J. Comput. Phys 1983, 52, 24. doi: 10.1016/0021-9991(83)90014-1
[18]
34 Betz G. ; Husinsky W. Nucl. Instrum. Methods Phys. Res. Sect. B 1997, 122, 311. doi: 10.1016/S0168-583X(96)00560-5
[19]
11 Jayaraman V. ; Lin Y. S. ; Pakala M. ; Lin R. Y. J. Membr. Sci 1995, 99 (94), 89.
[20]
12 Collins J. P. ; Way J. D. Ind. Eng. Chem. Res 1993, 32 (12), 3006. doi: 10.1021/ie00024a008
[21]
36 Mirabbaszadeh K. ; Zaminpayma E. ; Nayebi P. ; Saramad S. J. Cluster Sci 2008, 19 (2), 411. doi: 10.1007/s10876-008-0185-6
[22]
37 Zhou X. W. ; Johnson R. A. ; Wadley H. N. G. Phys. Rev. B 2004, 69 (14), 1124.
[23]
16 Aoki T. J. Comput. Electron 2013, 13 (1), 108.
[24]
18 Massobrio C. ; Nacer B. ; Bekkay T. ; Vandoni G. ; Fé lix C. Surf. Sci 1997, 385 (1), 87. doi: 10.1016/S0039-6028(97)00204-5
[25]
21 Hou Q. ; Hou M. ; Bardotti L. ; Pré vel B. ; Mélinon P. ; Perez A. Phys. Rev. B 2000, 62 (4), 2825. doi: 10.1103/PhysRevB.62.2825
[26]
22 Bardotti L. ; Prével B. ; Mélinon P. ; Perez A. ; Hou Q. ; Hou M. Phys. Rev. B 2000, 62 (4), 2835. doi: 10.1103/PhysRevB.62.2835
[27]
23 Lee S. G. ; Choi H. C. ; Chung Y. C. Curr. Appl. Phys 2011, 11 (4)
[28]
27 Hwang S. F. ; Li Y. H. ; Hong Z. H. Comput. Mater. Sci 2012, 56, 85. doi: 10.1016/j.commatsci.2012.01.010
[29]
5 Quicker P. ; H?llein V. ; Dittmeyer R. ; Dittmeyer R. Catal. Today 2000, 56 (1-3), 21. doi: 10.1016/S0920-5861(99)00259-X
[30]
6 Kamakoti P. ; Morreale B. D. ; Ciocco M. V. ; Howard B. H. ; Killmeyer R. P. ; Cugini A. V. ; Sholl D. S. Science 2005, 307 (5709), 569. doi: 10.1126/science.1107041
[31]
8 Nayebossadri S. ; Speight J. ; Book D. J. Membr. Sci 2014, 451 (2), 216.
[32]
13 Fang T. H. ; Kang S. H. ; Liao J. H. Appl. Surf. Sci 2009, 256 (5), 1395.
[33]
15 Cheng Y. T. ; Liang T. ; Nie X. ; Choudhary K. ; Phillpot S. R. ; Asthagiri A. ; Sinnott S. B. Surf. Sci 2014, 621, 109. doi: 10.1016/j.susc.2013.10.025
[34]
17 Vandoni G. ; Félix C. ; Monot R. ; Buttet J. ; Harbich W. Chem. Phys. Lett 1994, 229, 51. doi: 10.1016/0009-2614(94)01046-3
[35]
24 Zaminpayma E. ; Nayebi P. ; Mirabbaszadeh K. J. Cluster Sci 2008, 19 (4), 623. doi: 10.1007/s10876-008-0200-y
[36]
25 Hong Z. H. ; Fang T. H. ; Lin S. J. ; Hwang S. F. Comput. Mater. Sci 2010, 49 (4), 850. doi: 10.1016/j.commatsci.2010.06.035
[37]
28 Araghi H. ; Zabihi Z. Nucl. Instrum. Methods Phys. Res. Sect. B 2013, 298 (1), 13.