全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 


DOI: 10.3866/PKU.WHXB201506111

Full-Text   Cite this paper   Add to My Lib

Abstract:

制备了四种四丁基氯化铵类深共融溶剂,包括四丁基氯化铵:丙酸[TBAC:2PA]、四丁基氯化铵:乙二醇[TBAC:2EG]、四丁基氯化铵:聚乙二醇[TBAC:2PEG]、四丁基氯化铵:苯乙酸[TBAC:2PAA].在288.15-338.15 K温度范围内,测定了它们的密度、电导率、动力粘度及折光率.讨论了温度对密度、电导率、动力粘度及折光率等性质的影响.通过经验方程估算了深共融溶剂的热膨胀系数、分子体积、标准摩尔熵及晶格能等热力学性质参数.利用Vogel-Fulcher-Tamman (VFT)方程和Arrhenius方程,将测量的电导率和动力粘度对温度拟合,得到了动力粘度和电导率随温度变化方程式.有关研究对深共融溶剂的工业化应用具有重要意义.
Four deep eutectic solvents (DESs) were prepared from tetrabutylammonium chloride: tetrabutylammonium chloride:propionic acid [TBAC:2PA], tetrabutylammonium chloride:ethylene glycol [TBAC:2EG], tetrabutylammonium chloride:polyethylene glycol [TBAC:2PEG], and tetrabutylammonium chloride:phenylacetic acid [TBAC:2PAA]. The density, electrical conductivity, dynamic viscosity, and refractive index of the samples were measured at 288.15-338.15 K under atmospheric pressure. The influence of the temperature on the density, electrical conductivity, dynamic viscosity, and refractive index are discussed. The thermal expansion coefficient, molecular volume, standard molar entropy, and lattice energy were determined from the measured values using empirical equations. The temperature dependences on the electrical conductivity and dynamic viscosity of the DESs were fitted by the Vogel-Fulcher-Tamman (VFT) equation. The Arrhenius equation is also discussed for the electrical conductivity and dynamic viscosity. The above study will be of great significance for the industrial and engineering applications of DESs

References

[1]  2 Jhong H. R. ; Wong D. S. H. ; Wan C. C. ; Wang Y. Y. ; Wei T. C. Electrochem. Commun. 2009, 11, 209. doi: 10.1016/j.elecom.2008.11.001
[2]  4 Dai, Y.; Sprosen, J. V.; Witkamp, G. J.; Verpoorte, R.; Choi, Y. H. Anal. Chim. Acta 2013, 766, 61. doi: 10.1016/j.aca. 2012.12.019
[3]  8 Serrano, M. C.; Gutiérrez, M. C.; Jiménez, R.; Ferrer, M. L.; Monte, F. D. Chem. Commun. 2012, 48, 579. doi: 10.1039/C1CC15284J
[4]  9 Zhang Z. H. ; Zhang X. N. ; Mo L. P. ; Li Y. X. ; Ma F. P. Green Chem. 2012, 14, 1502. doi: 10.1039/c2gc35258c
[5]  10 Carriazo D. ; Gutirrez M. C. ; Pic F. ; Rojo J. M. ; Fierro J. L. G. ; Ferrer M. L. ; Monte F. D. ChemSusChem 2012, 5, 1405. doi: 10.1002/cssc.v5.8
[6]  11 Abbott A. P. ; Ttaib K. E. ; Frisch G. ; Ryder K. S. ; Weston D. Phys. Chem. Chem. Phys. 2012, 14, 2443. doi: 10.1039/c2cp23712a
[7]  12 Monte F. D. ; Carriazo D. ; Serrano M. C. ; Gutirrez M. C. ; Ferrer M. L. ChemSusChem 2014, 7, 999. doi: 10.1002/cssc.201300864
[8]  13 Abbott A. P. ; Cullis P. M. ; Gibson M. J. ; Harris R. C. ; Raven E. Green Chem. 2007, 9, 868. doi: 10.1039/b702833d
[9]  14 Shahbaz K. ; Mjalli F. S. ; Hashim M. A. ; AlNashef I. M. Energy Fuels 2011, 25, 2671. doi: 10.1021/ef2004943
[10]  17 Maugeri Z. ; María P. D. D. RSC Adv. 2012, 2, 421. doi: 10.1039/C1RA00630D
[11]  21 Liu Q. S. ; Li P. P. ; Welz-Biermann U. ; Chen J. ; Liu X. X. J.Chem. Thermodyn. 2013, 66, 88. doi: 10.1016/j.jct.2013.06.008
[12]  24 Tong, J.; Hong, M.; Chen, Y.; Wang, H.; Guan, W.; Yang, J. Z. J. Chem. Thermodyn. 2012, 54, 352. doi: 10.1016/j.jct.2012.05.012
[13]  25 Lide, D. R. Handbook of Chemistry and Physics, 82nd ed.; CRC Press: Boca Raton, FL, 2001-2002.
[14]  26 Jacquemin J. ; Husson P. ; Padua A. A. H. ; Majer V. Green Chem. 2006, 8, 172. doi: 10.1039/B513231B
[15]  15 Li C. P. ; Li D. ; Zou S. S. ; Li Z. ; Yin J. M. ; Wang A. L. ; Cui Y. N. ; Yao Z. L. ; Zhao Q. Green Chem. 2013, 15, 2793. doi: 10.1039/c3gc41067f
[16]  16 Abbott A. P. ; Capper G. ; Davias D. L. ; Rasheed R. K. ; Tambyrajah V. Chem. Commun. 2003, 70, 70.
[17]  18 Ru?, C.; K?nig, B. Green Chem. 2012, 14, 2969. doi: 10.1039/c2gc36005e
[18]  19 Bahadori L. ; Manan N. S. ; Chakrabarti M. H. ; Hashim M. A. ; Mjalli F. S. ; AlNashef I. M. ; Hussain M. A. ; Low C. T. J.Phys. Chem. Chem. Phys. 2013, 15, 1707. doi: 10.1039/C2CP43077K
[19]  20 Liu Q. S. ; Yang M. ; Yan P. F. ; Liu X. M. ; Tan Z. C. ; Welz-Biermann U. J.Chem. Eng. Data 2010, 55, 4928. doi: 10.1021/je100507n
[20]  22 Chen Y. ; Zhuo K. ; Chen J. ; Bai G. J.Chem. Thermodyn. 2015, 86, 13. doi: 10.1016/j.jct.2015.02.017
[21]  23 Chen Y. ; Zhang H. ; Li A. ; Zhuo K. Fluid Phase Equilibr. 2015, 388, 78. doi: 10.1016/j.fluid.2014.12.038
[22]  27 Glasser L. Thermochim. Acta 2004, 421, 87. doi: 10.1016/j.tca.2004.03.015
[23]  28 Vila J. ; Ginés P. ; Pico J. M. ; Franjo C. ; Jiménez E. ; Varela L. M. ; Cabeza O. Fluid Phase Equilibr. 2006, 242, 141. doi: 10.1016/j.fluid.2006.01.022
[24]  29 Schreiner C. ; Zugmann S. ; Hartl R. ; Gores H. J. J.Chem. Eng. Data 2010, 55, 1784. doi: 10.1021/je900878j
[25]  30 Belieres J. P. ; Angell C. A. J.Phys. Chem. B 2007, 111, 4926. doi: 10.1021/jp067589u
[26]  6 Krystof M. ; Pérez-Sánchez M. ; María P. D. D. ChemSusChem 2013, 6, 630. doi: 10.1002/cssc.201200931
[27]  7 Maugeri Z. ; María P. D. D. ChemCatChem 2014, 6, 1535.
[28]  1 Zhang Q. H. ; Vigier K. D. O. ; Royer S. ; Jér?me F. Chem. Soc. Rev. 2012, 41, 7108. doi: 10.1039/c2cs35178a
[29]  3 Singh B. S. ; Lobo H. R. ; Shankarling G. S. Catal. Commun. 2012, 24, 70. doi: 10.1016/j.catcom.2012.03.021
[30]  5 Francisco M. ; Bruinhorst A. V. D. ; Kroon M. C. Angew. Chem. Int. Edit. 2013, 52, 3074. doi: 10.1002/anie.201207548

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133