全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 


DOI: 10.3866/PKU.WHXB201505261

Full-Text   Cite this paper   Add to My Lib

Abstract:

用浓硝酸纯化改性碳纳米管(CNTs),以钛酸四丁酯为原料,通过溶胶-凝胶法制备碳纳米管-氧化钛(CNTs-TiO2)复合载体并浸渍制得V2O5/CNTs-TiO2催化剂,重点考察了制备过程中焙烧温度对催化剂催化氧化活性的影响.利用扫描电镜(SEM)、X射线衍射(XRD)仪、X射线光电子能谱(XPS)仪和紫外-可见(UV-Vis)分光光度计等对催化剂材料的结构、形貌和表面化学性质进行了表征分析.结果表明,硝酸处理后的碳纳米管纯度和石墨化程度增加, 450 ℃焙烧温度制备得到的催化剂活性组分分散度好, V2O5/CNTs-TiO2催化剂中钒钛氧均以有利于催化反应的价态存在;催化剂表面活性氧的含量最高,催化剂表现出很好的电子迁移与氧移动的能力,从而提高催化剂的催化活性.实验表明,在250 ℃、催化剂用量为0.2 g、N2 (80%) + O2 (20%)下催化降解六氯苯(HCB)的效率可达到94.78%左右,并在24 h内保持很好的稳定性.
Carbon nanotubes (CNTs) pretreated with concentrated HNO3 and tetrabutyl titanate were used as raw materials to prepare CNTs-TiO2 composite supports by the sol-gel method. Vanadium was then dipped into the CNTs-TiO2 composite support to synthesize the V2O5/CNTs-TiO2 catalyst. The influence of calcination temperature on the active species of the catalyst and the catalytic oxidation performance for degradation of hexachlorobenzene (HCB) were investigated. The synthesized catalysts were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet-visible (UV-Vis) spectroscopy. The surface chemical properties were analyzed by X-ray photoelectron spectroscopy (XPS). The results indicated that the modified carbon nanotubes have high purity and graphitization degree. The effect of calcination temperature on the active components and the activity of the catalyst were investigated. The results showed that calcination at 450 ℃ favored the dispersion of the active species of the catalyst and the formation of catalytic oxidation valences of V5+ and Ti4+ in the V2O5/CNTs-TiO2 catalyst. The presence of V5+ and Ti4+ increased the concentration of the surface oxygen of the catalyst, resulting in a higher catalytic activity because of promotion of the electron mobility and oxygen transfer: 94.78% of HCB can be conversed with a loading of 0.2 g of the catalyst in an atmosphere of N2 (80%) + O2 (20%) at 250 ℃. The conversion of HCB remained above 90% during a 24 h batch test, which showed a stable catalytic performance

References

[1]  8 Zhou, P.; Li, L.; Zhang, W. Z.; Guo, Y. X. Chin. J. Catal. 2004, 25, 753.
[2]  9 Weber R. Chemosphere 2007, 67, 109. doi: 10.1016/j.chemosphere.2006.05.094
[3]  10 Wu Q. ; Su Y. F. ; Sun L. ; Wang M. H. ; Wang Y. Y. ; Lin C. J. Acta Phys. -Chim. Sin 2012, 28, 635. doi: 10.3866/PKU.WHXB201112231
[4]  11 Debecker D. P. ; Delaigle R. ; Bouchmella K. ; Eloy P. ; Gaigneaux E. M. ; Mutin P. H. Catal. Today 2010, 157, 125. doi: 10.1016/j.cattod.2010.02.010
[5]  26 Mendialdua J. ; Casanova R. ; Barbaux Y. J. Electron. Spectrosc. Relat. Phenom 1995, 71, 249. doi: 10.1016/0368-2048(94)02291-7
[6]  27 Demeter M. ; Reichelt W. Surf. Sci 2000, 454, 41.
[7]  1 Zhu, N. R.; Luan, H. W.; Yuan, S. H.; Chen, J.; Wu, X. H.; Wan, L. L. J. Hazard. Mater. 2010, 176, 1101. doi: 10.1016/j.jhazmat. 2009.11.092
[8]  5 Domingo J. L. ; Gemma P. ; Nadal M. ; Marta S. Environ. Int 2012, 50, 22. doi: 10.1016/j.envint.2012.09.005
[9]  6 Zhang B. N. ; Meng F. ; Shi C. ; Yang F. Q. ; Wen D. Y. ; Aronsson J. ; Gbor P. K. ; Sloan J. Atmos. Environ 2009, 43, 2204. doi: 10.1016/j.atmosenv.2009.01.004
[10]  周萍,李莉,张文治,郭伊荇.催化学报, 2004, 25, 753.
[11]  吴奇; 苏钰丰; 孙兰; 王梦晔; 王莹莹; 林昌健. 物理化学学报, 2012, 28, 635. doi: 10.3866/PKU.WHXB201112231
[12]  12 Wang H. C. ; Liang H. S. ; Chang M. B. J. Hazard. Mater 2011, 186, 1781. doi: 10.1016/j.jhazmat.2010.12.070
[13]  17 An, Z. Y.; Zhuo, Y. Q.; Chen, C. H. J. Fuel Chem. Technol. 2014, 42, 371.
[14]  18 Lian, Z. H.; Liu, F. D.; He, H. Ind. Eng. Chem. Res. 2014, 53, 19506.
[15]  19 Zhang, H.; Liu, Y. S.; Liu, W. H.; Wang, B.Y.; Wei, L. Acta Phys. Sin. 2007, 56 (12), 7256.
[16]  褚道葆; 尹晓娟; 冯得香; 林华水; 田昭武. 物理化学学报, 2006, 22, 1238. doi: 10.3866/PKU.WHXB20061013
[17]  22 Zheng Z. H. ; Tong H. ; Tong Z. Q. ; Huang Y. ; Luo J. J. Fuel Chem. Technol 2010, 38, 343.
[18]  郑足红; 童华; 童志权; 黄妍; 罗晶. 燃料化学学报, 2010, 38, 343.
[19]  23 Mo J. H. ; Zhang Y. P. ; Xu Q. J. ; Yang R. J. Hazard. Mater 2009, 168, 276. doi: 10.1016/j.jhazmat.2009.02.033
[20]  24 Kim, B.; Li, Z. J.; Kay, B. D.; Dohnálek, Z.; Kim, Y. J. Phys. Chem. C 2014, 118, 9544. doi: 10.1021/jp501179y
[21]  2 Debecker D. P. ; Delaigle R. ; Hung P. C. ; Buekens A. ; Gaigneaux E. M. ; Chang M. B. Chemosphere 2011, 82, 1337. doi: 10.1016/j.chemosphere.2010.12.007
[22]  3 Yang, Y.; Yu, G.; Deng, S. B.; Wang, S. W.; Xu, Z. Z.; Huang, J.; Wang, B. Chem. Eng. J. 2012, 192, 284. doi: 10.1016/j.cej.2012.03.069
[23]  4 Domingo, J. L. Rev. Environ. Health 2002, 17, 135.
[24]  13 Nie A. ; Yang H. S. ; Li Q. ; Fan X. Y. ; Qiu F. M. ; Zhang X. B. Chem. Res 2011, 50, 9944.
[25]  14 Lin J. X. ; Wang G. H. ; Wang R. ; Lin B. Y. ; Ni j. ; Wei K. M. Acta Phys. -Chim. Sin 2011, 27, 1961. doi: 10.3866/PKU.WHXB20110812
[26]  林建新; 王国华; 王蓉; 林炳裕; 倪军; 魏可镁. 物理化学学报, 2011, 27, 1961. doi: 10.3866/PKU.WHXB20110812
[27]  15 Li Q. ; Yang H. S. ; Qiu F. M. ; Zhang X. B. J. Hazard. Mater 2011, 192, 915. doi: 10.1016/j.jhazmat.2011.05.101
[28]  25 Han Z. N. ; Chang V. W. ; Wang X. P. ; Lim T. T. ; Hildemann L. Chem. Eng. J 2013, 218, 9. doi: 10.1016/j.cej.2012.12.025
[29]  7 Andersson P. L. ; Berg A. H. ; Bjerselius R. ; Norrgren L. ; Olsén H. ; Olsson P. E. ; ?rn S. ; Tysklind M. Arch. Environ. Contam. Toxicol 2001, 40, 519.
[30]  16 Lee S. M. ; Lee H. H. ; Hong S. C. Appl. Catal A: Gen 2014, 470, 189. doi: 10.1016/j.apcata.2013.10.057
[31]  安忠义,禚玉群,陈昌和.燃料化学学报, 2014, 42, 371.
[32]  张辉,刘应书,刘文海,王宝义,魏龙,物理学报, 2007, 56 (12), 7256.
[33]  20 Yang H. P. ; Shi Z. M. ; Dai K. J. ; Duan Y. P. ; Wu J. M. Acta Chim. Sin 2011, 69, 536.
[34]  杨汉培; 石泽敏; 戴开静; 段云平; 吴俊明. 化学学报, 2011, 69, 536.
[35]  21 Chu D. B. ; Yin X. J. ; Feng D. X. ; L in. ; H. S; Tian Z. W. Acta Phys. -Chim. Sin 2006, 22, 1238. doi: 10.3866/PKU.WHXB20061013

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133