全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 


DOI: 10.3866/PKU.WHXB201710161

Full-Text   Cite this paper   Add to My Lib

Abstract:

Herein we have investigated the interaction between hydrazoic acid (HN3) and a pristine graphyne system based on density functional theory (DFT) method using generalized gradient approximation. The van der Waals dispersion correction is also considered for predicting the possibility of using the graphyne system for detection of hydrazoic acid. Pristine graphyne has a band gap of 0.453 eV, which decreases to 0.424 eV when HN3 is adsorbed on graphyne. The electrical conductivity of HN3-adsorbed graphyne is greater than that of its pristine counterpart. Charge transfer analysis reveals that the HN3-adsorbed graphyne system behaves as an n-type semiconductor; however, its pristine analogue acts as an intrinsic semiconductor. Pristine graphyne has zero dipole moment; however, its interaction with HN3 increases its dipole moment. The electronic properties of graphyne is significantly influenced by the presence of HN3, leading to the possibility of designing graphyne-based sensors for HN3 detection.
Herein we have investigated the interaction between hydrazoic acid (HN3) and a pristine graphyne system based on density functional theory (DFT) method using generalized gradient approximation. The van der Waals dispersion correction is also considered for predicting the possibility of using the graphyne system for detection of hydrazoic acid. Pristine graphyne has a band gap of 0.453 eV, which decreases to 0.424 eV when HN3 is adsorbed on graphyne. The electrical conductivity of HN3-adsorbed graphyne is greater than that of its pristine counterpart. Charge transfer analysis reveals that the HN3-adsorbed graphyne system behaves as an n-type semiconductor; however, its pristine analogue acts as an intrinsic semiconductor. Pristine graphyne has zero dipole moment; however, its interaction with HN3 increases its dipole moment. The electronic properties of graphyne is significantly influenced by the presence of HN3, leading to the possibility of designing graphyne-based sensors for HN3 detection

References

[1]  1 Kroto H. W. ; Heath J. R. ; O'Brien S. C. ; Curl R. F. ; Smalley R. E. Nature 1985, 318, 162. doi: 10.1038/318162a0
[2]  2 Iijima S. Nature 1991, 354, 56. doi: 10.1038/354056a0
[3]  4 Georgakilas V. ; Perman J. A. ; Tucek J. ; Zboril R. Chem. Rev. 2015, 115, 4744. doi: 10.1021/cr500304f
[4]  8 Romo-Herrera J. M. ; Terrones M. ; Terrones H. ; Meunier V. ACS Nano 2008, 2, 2585. doi: 10.1021/nn800612d
[5]  9 Baughman R. H. ; Eckhardt H. ; Kertesz M. J. Chem. Phys. 1987, 87, 6687. doi: 10.1063/1.453405
[6]  10 Narita N. ; Nagai S. ; Suzuki S. ; Nakao K. Phys. Rev. B 1998, 58, 11009. doi: 10.1103/PhysRevB.58.11009
[7]  14 Koo J. ; Huang B. ; Lee H. ; Kim G. ; Nam J. ; Kwon Y. ; Lee H. J. Phys. Chem. C 2014, 118, 2463. doi: 10.1021/jp4087464
[8]  15 Shayeganfar F. J. Phys. Chem. C 2015, 119, 12681. doi: 10.1021/acs.jpcc.5b01560
[9]  16 Deb J. ; Bhattacharya B. ; Sarkar U. J. Phys.: Conf. Ser. 2016, 759, 012038. doi: 10.1088/1742-6596/759/1/012038
[10]  18 Kang J. ; Li J. ; Wu F. ; Li S.-S. ; Xia J. -B. J. Phys. Chem. C 2011, 115, 20466. doi: 10.1021/jp206751m
[11]  19 Bhattacharya B. ; Singh N. B. ; Sarkar U. Int. J. Quantum Chem 2015, 115, 820. doi: 10.1002/qua.24910
[12]  20 Pan J. ; Du S. ; Zhang Y. ; Pan L. ; Zhang Y. ; Gao H. ; Pantelides S. T. Phys. Rev. B 2015, 92, 205429. doi: 10.1103/PhysRevB.92.205429
[13]  27 Omidvar A. ; Mohajeri A. Mol. Phys. 2015, 113, 3900. doi: 10.1080/00268976.2015.1080388
[14]  29 Srinivasu K. ; Ghosh S. K. J. Phys. Chem. C 2012, 116, 5951. doi: 10.1021/jp212181h
[15]  32 Chattaraj P. K. ; Sarkar U. ; Parthasarathi R. ; Subramanian V. Int. J. Quantum Chem. 2005, 101, 690. doi: 10.1002/qua.20334
[16]  35 Sarkar U. ; Giri S. ; Chattaraj P. K. J. Phys. Chem. A 2009, 113, 10759. doi: 10.1021/jp902374d
[17]  36 Khatua M. ; Sarkar U. ; Chattaraj P. K. Eur. Phys. J. D 2014, 68, 1. doi: 10.1140/epjd/e2013-40472-y
[18]  37 Chattaraj P. K. ; Khatua M. ; Sarkar U. Int. J. Quantum Chem. 2015, 115, 144. doi: 10.1002/qua.24801
[19]  43 Soler J. M. ; Artacho E. ; Gale J. D. ; García A. ; Junquera J. ; Ordejón P. ; Portal D. S. J. Phys. Condens. Matter 2002, 14, 2745. doi: 10.1088/0953-8984/14/11/302
[20]  44 Perdew J.P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
[21]  48 Ghara M. ; Pan S. ; Deb J. ; Kumar A. ; Sarkar U. ; Chattaraj P. K. J. Chem. Sci. 2016, 10, 15378. doi: 10.1007/s12039-016-1150-9
[22]  3 Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896
[23]  5 Lu H. ; Li S. -D. J. Mater. Chem. C 2013, 1, 3677. doi: 10.1039/C3TC30302K
[24]  6 Yang M. -Q. ; Zhang N. ; Xu Y. -J. ACS Appl. Mater. Interfaces 2013, 5, 1156. doi: 10.1021/am3029798
[25]  7 Deng W. -Q. ; Matsuda Y. ; Goddard W. A. J. Am. Chem. Soc. 2007, 129, 9834. doi: 10.1021/ja061443r
[26]  11 Malko D. ; Neiss C. ; Vi?es F. ; G?rling A. Phys. Rev. Lett. 2012, 108, 086804. doi: 10.1103/PhysRevLett.108.086804
[27]  12 Kondo M. ; Nozaki D. ; Tachibana M. ; Yumura T. ; Yoshizawa K. Chem. Phys. 2005, 312, 289. doi: 10.1016/j.chemphys.2004.11.029
[28]  13 Singh N. B. ; Bhattacharya B. ; Sarkar U. Struct. Chem. 2014, 25, 1695. doi: 10.1007/s11224-014-0440-4
[29]  17 Bhattacharya B. ; Sarkar U. J. Phys. Chem. C 2016, 120, 26793. doi: 10.1021/acs.jpcc.6b07478
[30]  21 Li C. ; Li J. ; Wu F. ; Li S.-S. ; Xia J.-B. ; Wang L. -W. J. Phys. Chem. C 2011, 115, 23221. doi: 10.1021/jp208423y
[31]  22 Guo Y. ; Jiang K. ; Xu B. ; Xia Y. ; Yin J. ; Liu Z. J. Phys. Chem. C 2012, 116, 13837. doi: 10.1021/jp302062c
[32]  23 Hwang H. J. ; Koo J. ; Park M. ; Park N. ; Kwon Y. ; Lee H. J. Phys. Chem. C 2013, 117, 691. doi: 10.1021/jp3105198
[33]  24 Deb J. ; Paul D. ; Sarkar U. AIP Conf. Proc. 2017, 1832, 050106. doi: 10.1063/1.4980339
[34]  25 Baheshtian J. ; Peyghan A. A. ; Bagheri Z. ; Tabar M. B. Struct. Chem. 2014, 25, 1. doi: 10.1007/s11224-013-0230-4
[35]  26 Deb J. ; Bhattacharya B. ; Sarkar U. AIP Conf. Proc. 2016, 1731, 050081. doi: 10.1063/1.4947735
[36]  28 Deb J. ; Bhattacharya B. ; Paul D. ; Sarkar U. Phys. E 2016, 84, 330. doi: 10.1016/j.physe.2016.08.006
[37]  30 Bhattacharya B. ; Sarkar U. ; Seriani N. J. Phys. Chem. C 2016, 120, 26579. doi: 10.1021/acs.jpcc.6b07092
[38]  31 Chattaraj P. K. ; Sarkar U. Int. J. Quantum Chem. 2003, 91, 633. doi: 10.1002/qua.10486
[39]  33 Chattaraj P. K. ; Sarkar U. Comp. Theor. Chem 2007, 19, 269. doi: 10.1016/S1380-7323(07)80014-8
[40]  34 Sarkar U. ; Khatua M. ; Chattaraj P. K. Phys. Chem. Chem. Phys. 2012, 14, 1716. doi: 10.1039/c1cp22862e
[41]  39 Peyghan A. A. ; Rastegar S. F. ; Hadipour N. L. Phys. Lett. A 2014, 378, 2184. doi: 10.1016/j.physleta.2014.05.016
[42]  38 Deb J. ; Bhattacharya B. ; Singh N. B. ; Sarkar U. Struct. Chem. 2016, 27, 1221. doi: 10.1007/s11224-016-0747-4
[43]  40 Majidi R. ; Karami A. R. Phys. E 2014, 59, 169. doi: 10.1016/j.physe.2014.01.019
[44]  41 Shekar S. C. ; Swathi R. S. J. Phys. Chem. C 2014, 118, 4516. doi: 10.1021/jp412791v
[45]  42 Ordejón P. ; Artacho E. ; Soler J. M. Phys. Rev. B 1996, 53, R10441. doi: 10.1103/PhysRevB.53.R10441
[46]  45 Troullier N. ; Martins J. Solid State Commun 1990, 74, 613. doi: 10.1016/0038-1098(90)90686-6
[47]  46 Grimme S. J. Comput. Chem. 2006, 27, 1787. doi: 10.1002/jcc.20495
[48]  47 Parr R. G. ; Chattaraj P. K. J. Am. Chem. Soc. 1991, 113, 1854. doi: 10.1021/ja00005a072

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133