全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 


DOI: 10.3866/PKU.WHXB201710101

Full-Text   Cite this paper   Add to My Lib

Abstract:


In this study, we show how to generalize Hirshfeld partitioning methods to possibly include non-spherical proatom densities. While this generalization is numerically challenging (requiring global optimization of a large number of parameters), it is conceptually appealing because it allows the proatoms to be pre-polarized, or even promoted, to a state that more closely resembles the atom in a molecule. This method is based on first characterizing the convex set of proatom densities associated with the degenerate ground states of isolated atoms and atomic ions. The preferred orientation of the proatoms' densities are then obtained by minimizing the information–theoretic distance between the promolecular and molecular densities. If contributions from excited states (and not just degenerate ground states) are included in the convex set, this method can describe promoted atoms. While the procedure is intractable in general, if one includes only atomic states that have differing electron-numbers and/or spins, the variational principle becomes a simple convex optimization with a single unique solution

References

[1]  4 Gázquez J. L. J. Mex. Chem. Soc. 2008, 52, 3.
[2]  18 Echegaray E. ; Toro-Labbe A. ; Dikmenli K. ; Heidar-Zadeh F. ; Rabi N. ; Rabi S. ; Ayers P. W. ; Cardenas C. ; Parr R. G. ; Anderson J. S. M. In Correlations in Condensed Matter under Extreme Conditions: A Tribute to Renato Pucci on the Occasion of His 70th Birthday; La Magna, A. Ed., Springer International Publishing: Cham, Switzerland 2017, p. 269. doi: 10.1007/978-3-319-53664-4_19
[3]  19 Fuentealba P. ; Pérez P. ; Contreras R. J. Chem. Phys. 2000, 113 (7), 2544. doi: 10.1063/1.1305879
[4]  20 Tiznado W. ; Chamorro E. ; Contreras R. ; Fuentealba P. J. Phys. Chem. A 2005, 109 (14), 3220. doi: 10.1021/jp0450787
[5]  25 Olah J. ; Van Alsenoy C. ; Sannigrahi A. B. J. Phys. Chem. A 2002, 106 (15), 3885. doi: 10.1021/jp014039h
[6]  26 Liu S. J. Chem. Phys. 2014, 141 (19), 194109. doi: 10.1063/1.4901898
[7]  27 Zhou X.-Y. ; Rong C. Y. ; Lu T. ; Liu S. B. Acta Phys. -Chim. Sin. 2014, 30 (11), 2055. doi: 10.3866/PKU.WHXB201409193
[8]  31 Mulliken R. S. J. Chem. Phys. 1955, 23 (12), 2343. doi: 10.1063/1.1741877
[9]  32 L?wdin P. -O. Adv. Quantum Chem. 1970, 5, 185. doi: 10.1016/S0065-3276(08)60339-1
[10]  51 Ayers P. W. Theor. Chem. Acc. 2006, 115, 370. doi: 10.1007/s00214-006-0121-5
[11]  52 Heidar-Zadeh F. ; Ayers P. W. Theor. Chem. Acc. 2017, 136 (8), 92. doi: 10.1007/s00214-017-2114-y
[12]  64 Manz T. A. ; Limas N. G. RSC Adv. 2016, 6 (53), 47771. doi: 10.1039/c6ra04656h
[13]  69 Lieb E. H. Int. J. Quantum Chem. 1983, 24 (3), 243. doi: 10.1002/qua.560240302
[14]  70 Ayers P. W. Phys. Rev. A 2006, 73, 012513. doi: 10.1103/PhysRevA.73.012513
[15]  71 Cardenas C. ; Ayers P. W. ; Cedillo A. J. Chem. Phys. 2011, 134, 174103. doi: 10.1063/1.3585610
[16]  2 Yang W. ; Cohen A. J. ; Proft F. D. ; Geerlings P. J. Chem. Phys. 2012, 136 (14), 144110. doi: 10.1063/1.3701562
[17]  5 Liu S. -B. Acta Phys. -Chim. Sin. 2009, 25 (3), 590. doi: 10.3866/PKU.WHXB20090332
[18]  6 Heidar-Zadeh F. ; Miranda-Quintana R. A. ; Verstraelen T. ; Bultinck P. ; Ayers P. W. J. Chem. Theory Comp. 2016, 12 (12), 5777. doi: 10.1021/acs.jctc.6b00494
[19]  8 Geerlings P. ; De Proft F. Phys. Chem. Chem. Phys. 2008, 10 (21), 3028. doi: 10.1039/B717671F
[20]  9 Fuentealba P. ; Parr R. G. J. Chem. Phys. 1991, 94 (8), 5559. doi: 10.1063/1.460491
[21]  10 Senet P. J. Chem. Phys. 1996, 105 (15), 6471. doi: 10.1063/1.472498
[22]  11 Franco-Pérez M. ; Ayers P. W. ; Gázquez J. L. ; Vela A. J. Chem. Phys. 2015, 143 (24), 244117. doi: 10.1063/1.4938422
[23]  13 Echegaray E. ; Cardenas C. ; Rabi S. ; Rabi N. ; Lee S. ; Zadeh F. H. ; Toro-Labbe A. ; Anderson J. S. M. ; Ayers P. W. J. Mol. Model. 2013, 19 (7), 2779. doi: 10.1007/s00894-012-1637-3
[24]  21 Zadeh F. H. ; Fuentealba P. ; Cardenas C. ; Ayers P. W. Phys. Chem. Chem. Phys. 2014, 16 (13), 6019. doi: 10.1039/c3cp52906a
[25]  22 Rong C. ; Lu T. ; Liu S. J. Chem. Phys. 2014, 140 (2), 024109. doi: 10.1063/1.4860969
[26]  23 Morgenstern A. ; Wilson T. R. ; Eberhart M. E. J. Phys. Chem. A 2017, 121 (22), 4341. doi: 10.1021/acs.jpca.7b00630
[27]  24 Sablon N. ; Proft F. D. ; Ayers P. W. ; Geerlings P. J. Chem. Phys. 2007, 126 (22), 224108. doi: 10.1063/1.2736698
[28]  28 Mulliken R. S. J. Chem. Phys. 1955, 23 (10), 1833. doi: 10.1063/1.1740588
[29]  33 Davidson E. R. J. Chem. Phys. 1967, 46 (9), 3320. doi: 10.1063/1.1841219
[30]  34 Reed A. E. ; Weinstock R. B. ; Weinhold F. J. Chem. Phys. 1985, 83 (2), 735. doi: 10.1063/1.449486
[31]  38 Zadeh F. H. ; Shahbazian S. Theor. Chem. Acc. 2010, 128 (2), 175. doi: 10.1007/s00214-010-0811-x
[32]  40 Hirshfeld F. L. Theor. Chim. Act. 1977, 44, 129. doi: 10.1007/BF00549096
[33]  41 Guerra C. F. ; Handgraaf J. W. ; Baerends E. J. ; Bickelhaupt F. M. J. Comput. Chem. 2004, 25 (2), 189. doi: 10.1002/jcc.10351
[34]  42 Nalewajski R. F. ; Parr R. G. Proc. Natl. Acad. Sci. 2000, 97, 8879. doi: 10.1073/pnas.97.16.8879
[35]  45 Davidson E. R. ; Chakravorty S. Theor. Chim. Acta 1992, 83 (5-6), 319. doi: 10.1007/bf01113058
[36]  47 Heidar-Zadeh F. ; Ayers P. W. ; Bultinck P. J. Chem. Phys. 2014, 141, 094103. doi: 10.1063/1.4894228
[37]  48 Heidar-Zadeh F. ; Ayers P. W. J. Chem. Phys. 2015, 142 (4), 044107. doi: 10.1063/1.4905123
[38]  49 Heidar-Zadeh F. ; Vinogradov I. ; Ayers P. W. Theor. Chem. Acc. 2017, 136 (4), 54. doi: 10.1007/s00214-017-2077-z
[39]  50 Ayers P. W. J. Chem. Phys. 2000, 113 (24), 10886. doi: 10.1063/1.1327268
[40]  53 Verstraelen T. ; Vandenbrande S. ; Heidar-Zadeh F. ; Vanduyfhuys L. ; Van Speybroeck V. ; Waroquier M. ; Ayers P. W. J. Chem. Theory Comp. 2016, 12 (8), 3894. doi: 10.1021/acs.jctc.6b00456
[41]  56 Verstraelen T. ; Ayers P. W. ; Van Speybroeck V. ; Waroquier M. J. Chem. Theory Comp. 2013, 9 (5), 2221. doi: 10.1021/ct4000923
[42]  57 Bultinck P. ; Van Alsenoy C. ; Ayers P. W. ; Carbo-Dorca R. J. Chem. Phys. 2007, 126 (14), 144111. doi: 10.1063/1.2715563
[43]  58 Bultinck P. ; Ayers P. W. ; Fias S. ; Tiels K. ; Van Alsenoy C. Chem. Phys. Lett. 2007, 444 (1?3), 205. doi: 10.1016/j.cplett.2007.07.014
[44]  59 Ghillemijn D. ; Bultinck P. ; Van Neck D. ; Ayers P. W. J. Comput. Chem. 2011, 32, 1561. doi: 10.1002/jcc.21734
[45]  60 Manz T. A. ; Sholl D. S. J. Chem. Theory Comp. 2010, 6 (8), 2455. doi: 10.1021/ct100125x
[46]  61 Manz T. A. ; Sholl D. S. J. Chem. Theory Comp. 2012, 8 (8), 2844. doi: 10.1021/ct3002199
[47]  62 Lee L. P. ; Limas N. G. ; Cole D. J. ; Payne M. C. ; Skylaris C. K. ; Manz T. A. J. Chem. Theory Comp. 2014, 10 (12), 5377. doi: 10.1021/ct500766v
[48]  63 Limas N. G. ; Manz T. A. RSC Adv. 2016, 6 (51), 45727. doi: 10.1039/c6ra05507a
[49]  65 Lillestolen T. C. ; Wheatley R. J. Chem. Commun. 2008, 45, 5909. doi: 10.1039/b812691g
[50]  66 Lillestolen T. C. ; Wheatley R. J. J. Chem. Phys. 2009, 131, 144101. doi: 10.1063/1.3243863
[51]  67 Verstraelen T. ; Ayers P. W. ; Van Speybroeck V. ; Waroquier M. Chem. Phys. Lett. 2012, 545, 138. doi: 10.1016/j.cplett.2012.07.028
[52]  68 Levy M. Phys. Rev. A 1982, 26 (3), 1200. doi: 10.1103/PhysRevA.26.1200
[53]  1 Parr R. G. ; Yang W. Density-Functional Theory of Atoms and Molecules New York, NY, USA: Oxford UP, 1989.
[54]  3 Geerlings P. ; De Proft F. ; Langenaeker W. Chem. Rev. 2003, 103 (5), 1793. doi: 10.1021/cr990029p
[55]  7 Heidar-Zadeh F. ; Richer M. ; Fias S. ; Miranda-Quintana R. A. ; Chan M. ; Franco-Perez M. ; Gonzalez-Espinoza C. E. ; Kim T. D. ; Lanssens C. ; Patel A. H. G. ; et al Chem. Phys. Lett. 2016, 660, 307. doi: 10.1016/j.cplett.2016.07.039
[56]  12 Ayers P. W. ; Anderson J. S. M. ; Bartolotti L. J. Int. J. Quantum Chem. 2005, 101 (5), 520. doi: 10.1002/qua.20307
[57]  14 Echegaray E. ; Rabi S. ; Cardenas C. ; Zadeh F. H. ; Rabi N. ; Lee S. ; Anderson J. S. M. ; Toro-Labbe A. ; Ayers P. W. J. Mol. Model. 2014, 20, 2162. doi: 10.1007/s00894-014-2162-3
[58]  15 Yang W. ; Mortier W. J. J. Am. Chem. Soc. 1986, 108 (19), 5708. doi: 10.1021/ja00279a008
[59]  16 Ayers P. W. ; Morrison R. C. ; Roy R. K. J. Chem. Phys. 2002, 116 (20), 8731. doi: 10.1063/1.1467338
[60]  17 Bultinck P. ; Fias S. ; Van Alsenoy C. ; Ayers P. W. ; Carbó-Dorca R. J. Chem. Phys. 2007, 127 (3), 034102. doi: 10.1063/1.2749518
[61]  29 Mulliken R. S. J. Chem. Phys. 1955, 23 (10), 1841. doi: 10.1063/1.1740589
[62]  30 Mulliken R. S. J. Chem. Phys. 1955, 23 (12), 2338. doi: 10.1063/1.1741876
[63]  35 Lu W. C. ; Wang C. Z. ; Schmidt M. W. ; Bytautas L. ; Ho K. M. ; Ruedenberg K. J. Chem. Phys. 2004, 120 (6), 2629. doi: 10.1063/1.1638731
[64]  36 Bader R. F. W. Atoms in Molecules: A Quantum Theory; Clarendon: Oxford, UK 1990.
[65]  37 Heidarzadeh F. ; Shahbazian S. Int. J. Quantum Chem. 2010, 111 (12), 2788. doi: 10.1002/qua.22629
[66]  39 Morgenstern A. ; Morgenstern C. ; Miorelli J. ; Wilson T. ; Eberhart M. E. Phys. Chem. Phys. Chem. 2016, 18 (7), 5638. doi: 10.1039/c5cp07852k
[67]  43 Nalewajski R. F. ; Parr R. G. J. Phys. Chem. A 2001, 105 (31), 7391. doi: 10.1021/jp004414q
[68]  44 Parr R. G. ; Ayers P. W. ; Nalewajski R. F. J. Phys. Chem. A 2005, 109 (17), 3957. doi: 10.1021/jp0404596
[69]  46 Heidar-Zadeh F. ; Ayers P. W. ; Verstraelen T. ; Vinogradov I. ; Vohringer-Martinez E. ; Bultinck P. J. Phys. Chem. A submitted 2017.
[70]  54 Heidar-Zadeh F. Variational Information-Theoretic Atoms-in-Molecules. Ph. D. Dissertation, McMaster University, Canada, and Ghent University, Belgium 2017.
[71]  55 Misquitta A. J. ; Stone A. J. ; Fazeli F. J. Chem. Theory Comp. 2014, 10 (12), 5405. doi: 10.1021/ct5008444

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133