近年来苯基硅杂环戊二烯作为一类高效的有机发光二极管材料被广泛研究。本工作利用密度泛函理论结合芯态空穴近似研究了1, 1, 2, 3, 4, 5-六苯基硅杂环戊二烯分子中碳原子K壳层和硅原子L壳层的X射线光电子能谱和近边X射线吸收精细结构谱,与实验谱线符合较好。通过理论结果对实验测量的1, 1, 2, 3, 4, 5-六苯基硅杂环戊二烯分子的X射线谱进行了分析和标定。我们发现碳原子K壳层X射线光电子能谱在低能区283.8eV处的谱峰是由于与硅原子成键的两个电负性较强的碳原子导致的。碳原子K壳层近边X射线吸收精细结构谱中最强的吸收峰与苯分子的吸收峰类似。硅原子L壳层近边X射线吸收精细结构谱两个主要吸收峰分别来自于σSi-C*和πSi-Ph*跃迁。 As an effective organic light-emitting diode, the benzene-based silole has recently been widely researched. We calculate the carbon K edge and silicon L edge X-ray photoelectron spectroscopy and nearedge X-ray absorption fine structure spectroscopy of the 1, 1, 2, 3, 4, 5-hexaphenylsilole (HPS) molecule with density functional theory. The theoretical results match the available experimental spectra very well. The experimental X-ray spectra were analyzed and assigned by our theoretical results. It is found that the peak at 283.8 eV in the carbon K edge X-ray photoelectron spectroscopy is caused by the two carbon atoms bonding with the silicon atom. The carbon K edge near-edge X-ray absorption fine structure spectroscopy possesses a strong resonance absorption similar with that observed for a benzene molecule. The two main resonances in silicon L edge near-edge X-ray absorption fine structure spectroscopy were assigned to σSi-C* and πSi-Ph* transitions
13 Diller K. ; Ma Y. ; Luo Y. ; Allegretti F. ; Liu J. ; Tang B. Z. ; Lin N. ; Barth J. V. ; Klappenberger F. Phys. Chem. Chem. Phys 2015, 17, 31117. doi: 10.1039/C5CP02935J
[4]
24 Becke A. D. Phys. Rev. A 1988, 38, 3098. doi: 10.1103/PhysRevA.38.3098
[5]
25 Perdew J. P. Phys. Rev. B 1986, 33, 8822. doi: 10.1103/PhysRevB.33.8822
[6]
28 Nyberg M. ; Luo Y. ; Triguero L. ; Pettersson L. G. M. ; ?gren H. Phys. Rev. B 1999, 60, 7956. doi: 10.1103/PhysRevB.60.7956
[7]
30 Triguero L. ; Pettersson L. G. M. ; ?gren H. Phys. Rev. B 1998, 58, 8097. doi: 10.1103/PhysRevB.58.8097
[8]
31 von Barth U. ; Grossman G. Phys. Rev. B 1982, 25, 5150. doi: 10.1103/PhysRevB.25.5150
[9]
32 Triguero L. ; Plashkevych O. ; Pettersson L. G. M. ; ?gren H. J. Electron Spectrosc. Relat. Phenom 1999, 104 (1-3), 195. doi: 10.1016/S0368-2048(99)00008-0
[10]
34 Song X. ; Wang G. ; Ma Y. ; Jiang S. ; Yue W. ; Xu S. ; Wang C. Chem. Phys. Lett 2016, 645, 164. doi: 10.1016/j.cplett.2015.12.005
[11]
36 Xiong J. Z. ; Jiang D. T. ; Liu Z. F. ; Baines K. M. ; Sham T. K. ; Urquhart S. G. ; Wen A. T. ; Tyliszczak T. ; Hitchcock A. P. Chem. Phys 1996, 203, 81. doi: 10.1016/0301-0104(95)00353-3
[12]
马庆宇; 关瑞芳; 李国忠; 冯圣玉. 有机化学, 2011, 31 (9), 1395.
[13]
3 Deng C. M. ; Niu Y. L. ; Peng Q. ; Shuai Z. G. Acta Phys. -Chim. Sin 2010, 26 (4), 1051.
[14]
5 Braye E. H. ; Hübel W. Chem. Ind. (London) 1959, 1250 doi: 10.1039/B105159H
[15]
12 Ma Y. ; Wang G.W. ; Sun S. T. ; Song X. N. Acta Phys. -Chim. Sin 2015, 31 (8), 1483. doi: 10.3866/PKU.WHXB201505251
14 Song X. ; Ma Y. ; Wang C. ; Dietrich P. D. ; Unger W. E. S. ; Luo Y. J. Phys. Chem. C 2012, 116 (23), 12649. doi: 10.1021/jp302716w
[18]
15 Pacilé D. ; Papagno M. ; Fraile R. A. ; Grioni M. ; Papagno L. Phys. Rev. Lett 2008, 101, 066806. doi: 10.1103/PhysRevLett.101.066806
[19]
16 Jeong H. K. ; Noh H. J. ; Kim J. Y. ; Colakerol L. ; Glans P. A. ; Jin M. H. ; Smith K. E. ; Lee Y. H. Phys. Rev. Lett 2009, 102, 099701. doi: 10.1103/PhysRevLett.102.099701
[20]
17 Hua, W.; Gao, B.; Li, S.; ?gren, H.; Luo, Y. Phys. Rev. B 2010, 82, 155433. doi: 10.1103/PhysRevB.82.155433
[21]
18 Zhang W. H. ; Carravetta V. ; Li Z. Y. ; Luo Y. ; Yang J. L. J. Chem. Phys 2009, 131, 244505. doi: 10.1063/1.3276339
[22]
20 Zhao Y. ; Truhlar D. G. Accounts Chem. Res 2008, 41, 157. doi: 10.1021/ar700111a
[23]
21 Frisch M. J. ; Trucks G.W. ; Schlegel H. B. ; et al Gaussian 09, Revision D.01; Gaussian Inc.:Wallingford, CT 2009.
[24]
23 Hermann K. ; Pettersson L. ; Casida M. ; et al 0; StoBe Software: Stockholm, Sweden 2007.
29 Hua W. J. ; Gao B. ; Luo Y. Prog. Chem 2012, 24 (6), 964.
[27]
8 St?hr J. NEXAFS Spectroscopy; Springer Verlag: Berlin 1996, pp 1-3.
[28]
9 Dietrich P. M. ; Graf N. ; Gross T. ; Lippitz A. ; Krakert S. ; Schupbach B. ; Terfort A. ; Unger W. E. S. Surf. Interface Anal 2010, 42, 1184. doi: 10.1002/sia.v42:6/7
[29]
10 Baio J. E. ; Weidner T. ; Brison J. ; Graham D. J. ; Gamble L. J. ; Castner ; D. G. J. Electron Spectrosc. Relat. Phenom 2009, 172, 2. doi: 10.1016/j.elspec.2009.02.008
[30]
26 Kutzelnigg W. ; Fleischer U. ; Schindler M. NMR: Basic Principles and Progress; Springer Verlag: Berlin Heidelberg 1990, Vol. 213
[31]
27 Sch?fer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100 (8), 5829. doi: 10.1063/1.467146
[32]
33 Li D. ; Bancroft G. M. ; Kasrai M. ; Fleet M. E. ; Secco R. A. ; Feng X. H. ; Tan K. H. ; Yang B. X. Am. Min 1994, 79, 622.
[33]
35 Chaboy J. ; Benfatto M. ; Davoli I. Phys. Rev. B 1995, 52, 10014. doi: 10.1103/PhysRevB.52.10014
[34]
37 Urquhart, S. G.; Turci, C. C.; Tyliszczak, T.; Brook, M. A.; Hitchcock, A. P. Organometallics 1997, 16, 2080. doi: 10.1021/om961028f
[35]
1 Ma Q. Y. ; Guan R. F. ; Li G. Z. ; Feng S. Y. Chin. J. Org. Chem 2011, 31 (9), 1395.
[36]
2 Mao L. Y. ; Wan J. H. ; Li Z. F. ; Tao L. ; Qiu H. Y. Prog. Chem 2009, 21 (10), 2153.
6 Braye E. H. ; Hübel W. ; Caplier I. J. Am. Chem. Soc 1961, 83, 4406. doi: 10.1021/ja01482a026
[39]
7 Zhang T. ; Jiang Y. ; Niu Y. ; Wang D. ; Peng Q. ; Shuai Z. J. Phys. Chem. A 2014, 118, 9094. doi: 10.1021/jp5021017
[40]
11 Song X. ; Hua W. ; Ma Y. ; Wang C. ; Luo Y. J. Phys. Chem. C 2012, 116, 23938. doi: 10.1021/jp307834x
[41]
19 Dong L. ; Wang W. ; Lin T. ; Diller K. ; Barth J. V. ; Liu J. ; Tang B. Z. ; Klappenberger F. ; Lin N. J. Phys. Chem. C 2015, 119, 3857. doi: 10.1021/acs.jpcc.5b00116
[42]
22 Rassolov V. ; Pople J. A. ; Ratner M. ; Windus T. L. J .Chem. Phys 1998, 109 (4), 1223. doi: 10.1063/1.476673