以葡萄糖作为碳源,通过简单的水热反应获得菱形碳包覆碳酸钴(CoCO3/C)复合材料,并研究了其作为锂离子电池负极材料的电化学性能.晶型和表面形貌通过X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)进行表征,用热重-差热分析法(TG-DTA)来测试CoCO3/C材料中碳的含量,用拉曼光谱分析无定型碳的存在. Barrett-Joyner-Halenda (BJH)则用来分析材料的孔径分布情况.实验表明,碳包覆不仅在CoCO3颗粒表面包覆了一层无定性碳,使得CoCO3材料在充放电过程中保持结构的稳定性,也形成了一些大约30 nm左右的介孔,这种孔的存在有助于电解液中离子的传输,从而提高材料的电化学性能.电极材料在0.90C(1.00C = 450 mAh?g-1)倍率下进行循环测试, 500次后的容量仍保持在539 mAh?g-1,显示出了较好的循环性能.当增加到3.00C倍率时CoCO3/C容量为130 mAh?g-1,再恢复到0.15C倍率时容量依然能够达到770 mAh?g-1,表现出了CoCO3/C具有良好的稳定性. Diamond-shaped carbon-coated CoCO3 (CoCO3/C) particles were prepared by a simple hydrothermal method, and carbon coating was realized using glucose as the carbon source. This study focuses on the electrochemical performance of CoCO3/C as an anode material. Its surface morphology and crystal lattice structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The content and structure of the carbon coating layer were further investigated by the thermogravimetry-differential thermal analysis (TG-DTA) technique and Raman spectroscopy. The pore size distribution was characterized using the Barrett-Joyner-Halenda (BJH) method. The results show that the carbon coating process creates not only a layer of amorphous carbon on the surface of CoCO3, but also a porous structure with pore size of ~30 nm. The amorphous carbon layer enhances the structural stability during the charging and discharging process, and the porous structure facilitates the movement of ions in the electrolyte, and thus improves its electrochemical performance. When the cycling performance was tested for 500 cycles, this CoCO3/C material maintained a capacity of 539 mAh?g-1 at 0.90C (1.00C = mAh?g-1), showing its excellent cycling capacity. When the current rate was increased to 3.00C, the capacity was 130 mAh?g-1. When the current rate was returned to 0.15C, its capacity was 770 mAh?g-1, demonstrating the great rate performance and stability of CoCO3/C
References
[1]
1 Ding P. ; Xu Y. L. ; Sun X. F. Acta Phys. -Chim. Sin 2013, 29 (2), 293.
23 Zhao S. Q. ; Yu Y. ; Wei S. S. ; Wang Y. X. ; Zhao C. H. ; Liu R. ; Shen Q. J.Power Sources 2014, 253, 251.
[11]
30 Ponrouch A. ; Taberna P. L. ; Simon P. ; Pala??n M. R. Electrochim. Acta 2012, 61, 13. doi: 10.1016/j.electacta.2011.11.029
[12]
21 Wang G. X. ; Liu H. ; Liu J. ; Qiao S. Z. ; Lu G. Q. M. ; Munroe P. ; Ahn H. J. Adv. Mater 2010, 22 (44), 4944. doi: 10.1002/adma.v22.44
[13]
24 Su, L. W.; Zhou, Z.; Shen, P. W. Electrochim. Acta 2013, 87, 180. doi: 10.1016/j.electacta.2012.09.003
[14]
27 Liu J. Z. ; Ni J. F. ; Zhao Y. ; Wang H. B. ; Gao L. J. J. Mater. Chem. A 2013, 1, 12879. doi: 10.1039/c3ta13141f
[15]
28 Ma R. G. ; He L. F. ; Lu Z. G. ; Yang S. L. ; Xi L. J. ; Chung J. C. CrystEngComm 2012, 14, 7882. doi: 10.1039/c2ce26041g
[16]
4 Broussely, M.; Archdale, G. J. Power Sources 2004, 136 (2), 386. doi: 10.1016/j.jpowsour.2004.03.031
[17]
5 Vu A. ; Qian Y. Q. ; Stein A. Adv. Energy Mater 2012, 2 (9), 1056. doi: 10.1002/aenm.v2.9
[18]
6 Shi S. Q. ; Zhang H. ; Ke X. Z. ; Ouyang C. Y. ; Lei M. S. ; Chen L. Q. Phys. Lett. A 2009, 373 (44), 4096. doi: 10.1016/j.physleta.2009.09.014
[19]
7 Ouyang C. Y. ; Du Y. L. ; Shi S. Q. ; Lei M. S. Phys. Lett. A 2009, 373 (31), 2796. doi: 10.1016/j.physleta.2009.05.071
[20]
8 Xu, J. B.; Gao, P.; Zhao, T. S. Energy Environ. Sci. 2012, 5, 5333. doi: 10.1039/C1EE01431E
[21]
11 Luo Y. ; Luo J. ; Zhou W. ; Qi X. ; Zhang H. ; Yu D. Y. W. ; Li C. M. ; Fan H. J. ; Yu T. J. Mater. Chem. A 2013, 1, 273. doi: 10.1039/C2TA00064D
[22]
12 Wang B. ; Zhu T. ; Wu H. B. ; Xu R. ; Chen J. S. ; Lou X. W. Nanoscale 2012, 4, 2145. doi: 10.1039/c2nr11897a
[23]
15 Aragón M. J. ; Pérez-Vicente C. ; Tirado J. L. Electrochem. Commumn 2007, 9 (7), 1744. doi: 10.1016/j.elecom.2007.03.031
[24]
16 Mirhashemihaghighi S. ; León B. ; Vicente P. C. ; Tirado J. L. ; Stoyanova R. ; Yoncheva M. ; Zhecheva E. ; Puche R. S. ; Arroyo E. M. ; Romero de Paz J. Inorg. Chem 2012, 51 (10), 5554. doi: 10.1021/ic3004382
[25]
18 Ding, Z. J.; Yao, B.; Feng, J. K.; Zhang, J. X. J. Mater. Chem. A 20131, 11200. doi: 10.1039/c3ta12227a
[26]
19 Eshkenazi V. ; Peled E. ; Burstein L. ; Golodnitsky D. Solid State Ionics 2004, 170 (1-2), 83. doi: 10.1016/S0167-2738(03)00107-3
[27]
20 Wu X. L. ; Jiang L. Y. ; Cao F. F. ; Guo Y. G. ; Wan L. J. Adv. Mater 2009, 21 (25-26), 2710. doi: 10.1002/adma.v21:25/26
[28]
2 Chen, S. Y.; Wang, Z. X.; Fang, X. P.; Zhao, H. L.; Liu, X. J.; Chen, L. Q. Acta Phys. -Chim. Sin. 2011, 27 (1), 97.
[29]
14 Xiong Q. Q. ; Xia X. H. ; Tu J. P. ; Chen J. ; Zhang Y. Q. ; Zhou D. ; Gu C. D. ; Wang X. L. J. J. Power Sources 2013, 240, 344. doi: 10.1016/j.jpowsour.2013.04.042
[30]
17 Su, L. W.; Zhou, Z.; Qin, X.; Tang, Q. W.; Wu, D. H.; Shen P. W. Nano Energy 2013, 2 (2), 276. doi: 10.1016/j. nanoen.2012.09.012
[31]
22 Belharouak I. ; Johnson C. ; Amine K. Electrochem. Commum 2005, 7 (10), 983. doi: 10.1016/j.elecom.2005.06.019
[32]
25 Ang W. A. ; Gupta N. ; Prasanth R. ; Madhavi S. ACS Appl. Mater. Interfaces 2012, 4 (12), 7011. doi: 10.1021/am3022653
[33]
26 Laruelle S. ; Grugeon S. ; Poizot P. ; Dollé M. ; Dupont L. ; Tarascon J. M. Electrochem. Soc 2002, 149 (5), A627.
[34]
29 Kang Y. M. ; Song M. S. ; Kim J. H. ; Kim H. S. ; Park M. S. ; Lee J. Y. ; Liu H. K. ; Dou S. X. Electrochim. Acta 2005, 50 (18), 3667. doi: 10.1016/j.electacta.2005.01.012