|
- 2017
Pd/γ-Al2O3催化剂催化氧化邻-二甲苯
|
Abstract:
利用纳米γ-Al2O3(10 nm)和普通γ-Al2O3(200-300 nm),采用浸渍法制备了1%(w)Pd/γ-Al2O3催化剂,考察了其催化氧化邻-二甲苯的性能以及催化剂的活性在氢气还原前后的区别。实验结果发现1%(w)Pd/γ-Al2O3(nano)在H2还原后催化氧化邻-二甲苯的活性最高,T90为150℃。利用X射线衍射(XRD)、比表面积(BET)、透射电镜(TEM)、X射线光电子能谱(XPS)等表征手段,研究了1%(w)Pd/γ-Al2O3催化剂物性结构与催化性能之间的构效关系。结果表明,还原态Pd是H2还原后催化剂催化氧化邻-二甲苯的活性物种;Pd的颗粒大小与催化剂活性有显著的关系,小粒径有利于催化剂活性提高;纳米γ-Al2O3载体与Pd之间的相互作用强,有利于Pd的粒径控制和分散,从而提高1%(w)Pd/γ-Al2O3(nano)催化剂的活性。
1% (w)Pd/γ-Al2O3 catalysts were prepared by the impregnation method using nano γ-Al2O3 (10 nm) and γ-Al2O3 (200-300 nm) as support materials. The catalysts were tested for catalytic oxidation of o-xylene and the difference of catalyst activity before and after hydrogen reduction was investigated. The results indicate that 1% (w)Pd/γ-Al2O3 (nano) has the highest catalytic activity for o-xylene oxidation after H2 reduction, and the T90 (The temperature of conversion rate of o-xylene reaches 90%) was 150℃. The structure-activity relationships of the catalysts were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), while the specific surface area was determined using the Brunauer-Emmett-Teller (BET) isotherm. The results show that the reduced Pd is the active species for catalytic oxidation of o-xylene. Pd particle size has a significant influence on the catalyst activity and a small Pd particle size is favorable. There is a strong interaction between the supporter (nano γ-Al2O3) and the Pd species, which facilitates the particle size control and Pd dispersion, thereby increasing the catalyst activity of the 1% (w)Pd/γ-Al2O3(nano) catalyst
[1] | 1 Ernstgard L. ; Gullstrand E. ; Lof A. ; Johanson G. Occup. Environ. Med. 2002, 59, 759. doi: 10.1136/oem.59.11.759 |
[2] | 2 Deng J. G. ; He S. N. ; Xie S. H. ; Yang H. G. ; Liu Y. X. ; Dai H. X. Chem. J. Chin. Univ. 2014, 35, 1119. doi: 10.7503/cjcu20131271 |
[3] | 8 Lu H. F. ; Zhou Y. ; Han W. F. ; Huang H. F. ; Chen Y. F. Appl. Catal. A 2013, 464, 101. doi: 10.1016/j.apcata.2013.05.036 |
[4] | 12 Huang H. ; Leung D. Y. C. ACS Catal. 2011, 1, 348. doi: 10.1021/cs200023p |
[5] | 15 Wang G. S. ; Lee J. W. ; Sang C. K. Appl. Catal. B 2008, 84, 133. doi: 10.1016/j.apcatb.2008.03.011 |
[6] | 16 Ordó?ez S. ; Bello L. ; Sastre H. ; Rosal R. ; DíEz F. V. Appl. Catal. B 2002, 38, 139. doi: 10.1016/S0926-3373(02)00036-X |
[7] | 19 Yazawa Y. ; Yoshida H. ; Takagi N. ; Komai S. I. ; Satsuma A. ; Hattori T. Appl. Catal. B 1998, 19, 261. doi: 10.1016/S0926-3373(98)00080-0 |
[8] | 肖小燕; 鲁继青; 苏孝文; 郭明; 罗孟飞. 物理化学学报, 2009, 25, 561. doi: 10.3866/PKU.WHXB20090327 |
[9] | 21 Padilla J. M. ; Angel G. D. ; Navarrete J. Catal. Today 2008, 133, 541. doi: 10.1016/j.cattod.2007.12.053 |
[10] | 22 Wu C. S. ; Lin Z. A. ; Tsai F. M. ; Pan J. W. Catal. Today 2000, 63, 419. doi: 10.1016/S0920-5861(00)00487-9 |
[11] | 邓积光; 何胜男; 谢少华; 杨黄根; 刘雨溪; 戴洪兴. 高等学校化学学报, 2014, 35, 1119. doi: 10.7503/cjcu20131271 |
[12] | 3 Zhu X. ; Shen M. ; Lobban L. L. ; Mallinson R. G. J Catal. 2011, 278, 123. doi: 10.1016/j.jcat.2010.11.023 |
[13] | 4 Li W. B. ; Gong H. Acta Phys. -Chim. Sin. 2010, 26, 885. doi: 10.3866/PKU.WHXB20100436 |
[14] | 黎维彬; 龚浩. 物理化学学报, 2010, 26, 885. doi: 10.3866/PKU.WHXB20100436 |
[15] | 5 Okumura K. ; Kobayashi T. ; Tanaka H. ; Niwa M. Appl. Catal. B. 2003, 44, 325. doi: 10.1016/S0926-3373(03)00101-2 |
[16] | 6 Barakat T. ; Rooke J. C. ; Tidahy H. L. ; Hosseini M. ; Cousin R. ; Lamonier J. F. ; Giraudon J. M. ; De W. G. ; Su B. L. ; Siffert S. ChemSusChem 2011, 4, 1420. doi: 10.1002/cssc.201100282 |
[17] | 25 Pecchi G. ; Reyes P. ; Concha I. ; Fierro J. L. G. J. Catal. 1998, 179, 309. doi: 10.1006/jcat.1998.2164 |
[18] | 26 Brun M. ; Berthet A. ; Bertolini J. C. J. Electron Spectrosc. Relat. Phenom. 1999, 104, 55. doi: 10.1016/S0368-2048(98)00312-0 |
[19] | 7 Centi G. J. Mol. Catal. A: Chem. 2001, 173, 287. doi: 10.1016/S1381-1169(01)00155-8 |
[20] | 9 Ferrer V. ; Moronta A. ; Sánchez J. ; Solano R. ; Bernal S. ; Finol D. Catal. Today 2005, 107, 487. doi: 10.1016/j.cattod.2005.07.059 |
[21] | 10 Kim H. S. ; Kim T. W. ; Koh H. L. ; Lee S. H. ; Min B. R. Appl. Catal. A 2005, 280, 125. doi: 10.1016/j.apcata.2004.02.027 |
[22] | 11 Tidahy H. L. ; Hosseni M. ; Siffert S. ; Cousin R. ; Lamonier J. F. ; Abouka?s A. ; Su B. L. ; Giraudon J. M. ; Leclercq G. Catal. Today 2008, 137, 335. doi: 10.1016/j.cattod.2007.09.008 |
[23] | 13 Huang S. ; Zhang C. ; He H. Catal. Today 2008, 139, 15. doi: 10.1016/j.cattod.2008.08.020 |
[24] | 14 Sang C. K. ; Wang G. S. Appl. Catal. B 2009, 92, 429. doi: 10.1016/j.apcatb.2009.09.001 |
[25] | 17 Wang G. S. ; Sang C. K. ; Kang H. C. ; Nahm S. W. ; Lee J. W. ; Moon H. Appl. Surf. Sci. 2007, 253, 5868. doi: 10.1016/j.apsusc.2006.12.079 |
[26] | 18 Okumura K. ; Niwa M. Catal. Surv. Asia 2002, 5, 121. doi: 10.1016/j.apsusc.2006.12.079 |
[27] | 20 Xiao X. X. ; Lu J. Q. ; Su X. W. ; Guo M. ; Luo M. F. Acta Phys. -Chim. Sin. 2009, 25, 561. doi: 10.3866/PKU.WHXB20090327 |
[28] | 23 Pecchi G. ; Morales M. ; Reyes P. ; React K. Mech. Catal. 1997, 61, 237. |
[29] | 24 Sekizawa K. ; Eguchi K. ; Widjaja H. ; Machida M. ; Arai H. Catal. Today 1996, 28, 245. doi: 10.1016/0920-5861(95)00241-3 |
[30] | 27 Iwasa N. ; Kudo S. ; Takahashi H. ; Masuda S. ; Takezawa N. Catal. Lett. 1993, 19, 211. doi: 10.1007/BF00771756 |
[31] | 28 Venezia A. M. ; Rossi A. ; Duca D. ; Martorana A. ; Deganello G. Appl. Catal. A 1995, 125, 113. doi: 10.1016/0926-860X(94)00286-X |