报道了基于热激活延迟荧光材料2, 4, 5, 6-四(9-咔唑基)-间苯二腈(4CzIPN),聚合物聚(9-乙烯基咔唑)(PVK)和小分子材料2, 2'-(1, 3-苯基)二[5-(4-叔丁基苯基)-1, 3, 4-噁二唑](OXD-7)为共主体材料的发光器件,器件的外量子效率达到13%;进一步研究4CzIPN敏化5, 6, 11, 12-四苯基并四苯(Rubrene)的器件,外量子效率达到9.2%,为未掺杂4CzIPN器件的5.4倍。通过瞬态光谱测量证实敏化器件的发光机制为F?rster能量转移,并探讨了Rubrene浓度和载流子平衡对器件发光特性的影响,推测Rubrene自聚集是限制敏化器件效率的内在原因。 Polymer light emitting devices incorporating poly(9-vinylcarbazole) (PVK):2, 2'-(1, 3-phenylene)-bis [5-(4-tert-butylphenyl)-1, 3, 4-oxadiazole] (OXD-7) as the co-host and the thermally activated delayed fluorescence compound 2, 4, 5, 6-tetrakis(carbazol-9-yl)-1, 3-dicyanobenzene (4CzIPN) as the emissive dopant exhibited a peak external quantum efficiency of 13%. In addition, 4CzIPN-sensitized (5, 6, 11, 12)-tetraphenyl-naphthacene (Rubrene) devices gave a peak external quantum efficiency of 9.2%, a value that is 5.4 times that of analogous devices without 4CzIPN. Based on transient luminescence measurements, the working mechanism for 4CzIPN sensitization was determined to be F?rster energy transfer from 4CzIPN to Rubrene. This work assessed the effects of the Rubrene concentration and the carrier transport balance in the emission layer on the device properties, and the results suggest that the self-aggregation of Rubrene may limit device efficiency
References
[1]
1 Tang C. W. ; VanSlyke S. A. Appl. Phys. Lett. 1987, 51 (12), 913. doi: 10.1063/1.98799
[2]
3 Baldo M. A. ; O'Brien D. F. ; You Y. ; Shoustikov A. ; Sibley S. ; Thompson M. E. ; Forrest S. R. Nature 1998, 395 (6698), 151. doi: 10.1038/25954
[3]
4 Tao Y. ; Yuan K. ; Chen T. ; Xu P. ; Li H. ; Chen R. ; Zheng C. ; Zhang L. ; Huang W. Adv. Mater. 2014, 26 (47), 7931. doi: 10.1002/adma.201402532
[4]
5 Huang B. ; Dai Y. ; Ban X. X. ; Jiang W. ; Zhang Z. H. ; Sun K.Y. ; Lin B. P. ; Sun Y. M. Acta Phys. -Chim. Sin. 2015, 31 (8), 1621. doi: 10.3866/PKU.WHXB201506121
8 Uoyama H. ; Goushi K. ; Shizu K. ; Nomura H. ; Adachi C. Nature 2012, 492 (7428), 2348. doi: 10.1038/nature11687
[7]
11 Im Y. ; Lee J. Y. Chemistry of Materials 2014, 26 (3), 1413. doi: 10.1021/cm403358h
[8]
12 Xie G. ; Li X. ; Chen D. ; Wang Z. ; Cai X. ; Chen D. ; Li Y. ; Liu K. ; Cao Y. ; Su S. J. Adv. Mater. 2015, 28 (1), 1. doi: 10.1002/adma.201503225
[9]
14 Yang X. ; Müller D. C. ; Neher D. ; Meerholz K. Adv. Mater. 2006, 18 (7), 948. doi: 10.1002/adma.200501867
[10]
2 Geffroy B. ; Le Roy P. ; Prat C. Polym. Int. 2006, 55 (6), 572. doi: 10.1002/pi.1974
[11]
6 Gaj M. P. ; Fuentes-Hernandez C. ; Zhang Y. ; Marder S. R. ; Kippelen B. Org. Electron. 2015, 16, 109. doi: 10.1016/j.orgel.2014.10.049
[12]
7 Cho Y. J. ; Yook K. S. ; Lee J. Y. Adv. Mater. 2014, 26 (38), 6642. doi: 10.1002/adma.201402188
[13]
9 Suzuki Y. ; Zhang Q. ; Adachi C. J. Mater. Chem. C 2015, 3 (8), 1700. doi: 10.1039/c4tc02211d
[14]
10 Nakanotani H. ; Higuchi T. ; Furukawa T. ; Masui K. ; Morimoto K. ; Numata M. ; Tanaka H. ; Sagara Y. ; Yasuda T. ; Adachi C. Nat. Commun. 2014, 5 (4016), 1. doi: 10.1038/ncomms5016
[15]
13 Zhao B. ; Zhang T. ; Chu B. ; Li W. ; Su Z. ; Luo Y. ; Li R. ; Yan X. ; Jin F. ; Gao Y. ; Wu H. Org. Electron. 2015, 17, 15. doi: 10.1016/j.orgel.2014.11.014
[16]
20 Taima T. ; Sakai J. ; Yamanari T. ; Saito K. Sol. Energy Mater. Sol. Cells 2009, 93 (6-7), 742. doi: 10.1016/j.solmat.2008.09.018
[17]
21 Wang Y. ; Teng F. ; Ma C. ; Xu Z. ; Hou Y. ; Yang S. ; Wang Y. ; Xu X. Displays 2004, 25 (5), 237. doi: 10.1016/j.displa.2004.09.016
[18]
22 Yang X. H. ; Jaiser F. ; Klinger S. ; Neher D. Appl. Phys. Lett. 2006, 88 (2), 021107. doi: 10.1063/1.2162693
[19]
23 Su S. J. ; Chiba T. ; Takeda T. ; Kido J. Adv. Mater. 2008, 20 (11), 2125. doi: 10.1002/adma.200701730
[20]
25 Wang S. ; Zhang Y. ; Chen W. ; Wei J. ; Liu Y. ; Wang Y. Chem. Commun. 2015, 51 (60), 11972. doi: 10.1039/c5cc04469c
[21]
27 Sandanayaka A. S. D. ; Yoshida K. ; Matsushima T. ; Adachi C. J. Phys. Chem. C 2015, 119 (14), 7631. doi: 10.1021/acs.jpcc.5b01314
[22]
29 Taneda M. ; Shizu K. ; Tanaka H. ; Adachi C. Chem. Commun. 2015, 51 (24), 5028. doi: 10.1039/c5cc00511f
[23]
31 Kim M. ; Jeon S. K. ; Hwang S. H. ; Lee J. Y. Synth. Met. 2015, 209, 19. doi: 10.1016/j.synthmet.2015.06.020
[24]
33 Wang C. S. ; Jung G. Y. ; Hua Y. L. ; Pearson C. ; Bryce M. R. ; Petty M. C. ; Batsanov A. S. ; Goeta A. E. ; Howard J. A. K Chem. Mater. 2001, 13 (4), 1167. doi: 10.1021/cm0010250
[25]
15 Kim S. ; Kim B. ; Lee J. ; Park J. Mol. Cryst. Liq. Cryst. 2014, 597 (1), 107. doi: 10.1080/15421406.2014.932245
[26]
16 Yook K. S. ; Lee J. Y. Org. Electron. 2011, 12 (10), 1711. doi: 10.1016/j.orgel.2011.07.004
[27]
17 Lim G. E. ; Ha Y. E. ; Jo M. Y. ; Park J. ; Kang Y. C. ; Kim J. H. ACS Appl. Mater. Interfaces 2013, 5 (14), 6508. doi: 10.1021/am400478b
[28]
18 Stingelin-Stutzmann N. ; Smits E. ; Wondergem H. ; Tanase C. ; Blom P. ; Smith P. ; de Leeuw D. Nat. Mater. 2005, 4 (8), 601. doi: 10.1038/nmat1426
[29]
19 Fan C. ; Lei Y. ; Liu Z. ; Wang R. ; Lei Y. ; Li G. ; Xiong Z. ; Yang X. ACS Appl. Mater Interfaces 2015, 7 (37), 20769. doi: 10.1021/acsami.5b05815
[30]
24 Wei L. ; Yang Y. ; Fan R. ; Na Y. ; Wang P. ; Dong Y. Thin Solid Films 2015, 592, 14. doi: 10.1016/j.tsf.2015.08.045
[31]
26 Kondakov D. Y. ; Pawlik T. D. ; Hatwar T. K. ; Spindler J. P. J. Appl. Phys. 2009, 106 (12), 124510. doi: 10.1063/1.3273407
[32]
28 Wada Y. ; Shizu K. ; Kubo S. ; Suzuki K. ; Tanaka H. ; Adachi C. ; Kaji H. Appl. Phys. Lett. 2015, 107 (18), 183303. doi: 10.1063/1.4935237
[33]
30 Clegg R. M. Current Opinion in Biotechnology 1995, 6 (1), 103. doi: 10.1016/0958-1669(95)80016-6
[34]
32 Kawamura Y. ; Yanagida S. ; Forrest S. R. J. Appl. Phys. 2002, 92 (1), 87. doi: 10.1063/1.1479751