全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201511132

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用原子力显微镜原位研究单晶硅片负极在首次充放电循环中的界面形貌变化。硅负极表面固体电解质界面(SEI)膜的形成过程为:初始SEI膜从1.5 V开始形成,在1.25–1.0 V之间生长快速,0.6 V左右生长缓慢。初始SEI膜具有层状结构的特征,表层薄膜较软,下层呈颗粒状,机械稳定性较好。在锂化电位下,硅负极表面的单晶结构逐渐变得颗粒化,发生不可逆的结构变化。经过首个充放电循环后,硅负极表面被厚度不均一的SEI膜所覆盖,SEI膜的厚度大约为10–40 nm。
The interfacial morphology of a single crystal Si wafer anode during the first discharging-charging cycle was investigated using in situ atomic force microscopy (AFM). The solid-electrolyte interphase (SEI) began to grow from 1.5 V, developing rapidly between 1.25 and 1.0 V, and slowed down after 0.6 V. The morphology suggested that the SEI had a layered structure. The outer layer of SEI was soft and easy to be scraped off during the AFM tip scanning. The underlayer of SEI had granular features. During the lithiation process, the Si surface became grainy because of the insertion of Li ions. After the first cycle, the Si surface was completely covered by inhomogeneous SEI. The thickness of the SEI was approximately 10–40 nm

References

[1]  1 Palacin M. R. Chem. Soc. Rev 2009, 38, 2565. doi: 10.1039/B820555H
[2]  2 Beattie S. D. ; Larcher D. ; Morcrette M. ; Simon B. ; Tarascon J. M. J. Electrochem. Soc 2008, 155, A158. doi: 10.1149/1.2817828
[3]  3 Wu H. ; Cui Y. Nano Today 2012, 7, 414. doi: 10.1016/j.nantod.2012.08.004
[4]  5 Wu H. ; Zheng G. ; Liu N. ; Carney T. J. ; Yang Y. ; Cui Y. Nano Lett 2012, 12, 904. doi: 10.1021/nl203967r
[5]  6 Szczech J. R. ; Jin S. Energy Environ. Sci 2011, 4, 56. doi: 10.1039/C0EE00281J
[6]  10 Zhou X. ; Yin Y. X. ; Wan L. J. ; Guo Y. G. Chem. Commun 2012, 48, 2198. doi: 10.1039/c2cc17061b
[7]  23 Jeong S. K. ; Inaba M. ; Abe T. ; Ogumi Z. J. Electrochem. Soc 2001, 148, A989.
[8]  25 Liu X. R. ; Wang L. ; Wan L. J. ; Wang D. ACS Appl. Mater. Interfaces 2015, 7, 9573. doi: 10.1021/acsami.5b01024
[9]  29 Liu R. R. ; Deng X. ; Liu X. R. ; Yan H. J. ; Cao A. M. ; Wang D. Chem. Commun 2014, 50, 15756. doi: 10.1039/C4CC07290A
[10]  37 Tokranov A. ; Sheldon B. W. ; Li C. ; Minne S. ; Xiao X. ACS Appl. Mater. Interfaces 2014, 6, 6672. doi: 10.1021/am500363t
[11]  44 Cresce A. V. ; Russell S. M. ; Baker D. R. ; Gaskell K. J. ; Xu K. Nano Lett 2014, 14, 1405. doi: 10.1021/nl404471v
[12]  45 Leroy S. ; Martinez H. ; Dedryvere R. ; Lemordant D. ; Gonbeau D. Appl. Surf. Sci 2007, 253, 4895. doi: 10.1016/j.apsusc.2006.10.071
[13]  11 Li X. ; Meduri P. ; Chen X. ; Qi W. ; Engelhard M. H. ; Xu W. ; Ding F. ; Xiao J. ; Wang W. ; Wang C. J. Mater. Chem 2012, 22, 11014. doi: 10.1039/C2JM31286G
[14]  12 Liu N. ; Wu H. ; McDowell M. T. ; Yao Y. ; Wang C. ; Cui Y. Nano Lett 2012, 12, 3315. doi: 10.1021/nl3014814
[15]  16 Arreaga-Salas D. E. ; Sra A. K. ; Roodenko K. ; Chabal Y. J. ; Hinkle C. L. J. Phys. Chem. C 2012, 116, 9072. doi: 10.1021/jp300787p
[16]  19 Li J. T. ; Zhou Z. Y. ; Broadwell I. ; Sun S. G. Accounts Chem. Res 2012, 45, 485. doi: 10.1021/ar200215t
[17]  20 Rhodes K. ; Kirkham M. ; Meisner R. ; Parish C. M. ; Dudney N. ; Daniel C. Rev. Sci. Instrum 2011, 82, 075107. doi: 10.1063/1.3607961
[18]  21 Sugimoto Y. ; Pou P. ; Abe M. ; Jelinek P. ; Pérez R. ; Morita S. Custance, ó. Nature 2007, 446, 64. doi: 10.1038/nature05530
[19]  22 Morita S. J. Electron Microsc 2011, 60, S199. doi: 10.1093/jmicro/dfr047
[20]  28 Domi Y. ; Ochida M. ; Tsubouchi S. ; Nakagawa H. ; Yamanaka T. ; Doi T. ; Abe T. ; Ogumi Z. J. Phys. Chem. C 2011, 115, 25484. doi: 10.1021/jp2064672
[21]  36 Zheng J. ; Zheng H. ; Wang R. ; Ben L. ; Lu W. ; Chen L. ; Li H. Phys. Chem. Chem. Phys 2014, 16, 13229. doi: 10.1039/c4cp01968g
[22]  43 Philipsen H. G. ; Kelly J. J. J. Phys. Chem. B 2005, 109, 17245. doi: 10.1021/jp052595w
[23]  4 Kong F. ; Kostecki R. ; Nadeau G. ; Song X. ; Zaghib K. ; Kinoshita K. ; McLarnon F. J. Power Sources 2001, 97, 58. doi: 10.1016/S0378-7753(01)00588-2
[24]  7 Liu X. H. ; Zhong L. ; Huang S. ; Mao S. X. ; Zhu T. ; Huang J. Y. ACS Nano 2012, 6 (1522) doi: 10.1021/nn204476h
[25]  8 McDowell M. T. ; Lee S. W. ; Harris J. T. ; Korgel B. A. ; Wang C. ; Nix W. D. ; Cui Y. Nano Lett 2013, 13, 758. doi: 10.1021/nl3044508
[26]  9 Chen, D.; Mei, X.; Ji, G.; Lu, M.; Xie, J.; Lu, J.; Lee, J. Y. Angew. Chem. Int. Edit. 2012, 51, 2409. doi: 10.1002/anie.201107885.
[27]  24 Deng X. ; Liu X. ; Yan H. ; Wang D. ; Wan L. Sci. China Chem 2013, 57, 178. doi: 10.1007/s11426-013-4988-4
[28]  31 Martin L. ; Martinez H. ; Ulldemolins M. ; Pecquenard B. ; Le Cras F. Solid State Ionics 2012, 215, 36. doi: 10.1016/j.ssi.2012.03.042
[29]  32 He, Y.; Yu, X.; Li, G.; Wang, R.; Li, H.; Wang, Y.; Gao, H.; Huang, X. J. Power Sources 2012, 216, 131. doi: 10.1016/j.jpowsour.2012.04.105.
[30]  33 Becker C. R. ; Strawhecker K. E. ; McAllister Q. P. ; Lundgren C. A. ACS Nano 2013, 7, 9173. doi: 10.1021/nn4037909
[31]  34 McAllister Q. P. ; Strawhecker K. E. ; Becker C. R. ; Lundgren C. A. J. Power Sources 2014, 257, 380. doi: 10.1016/j.jpowsour.2014.01.077
[32]  35 Liu X. R. ; Deng X. ; Liu R. R. ; Yan H. J. ; Guo Y. G. ; Wang D. ; Wan L. J. ACS Appl. Mater. Interfaces 2014, 6, 20317. doi: 10.1021/am505847s
[33]  39 Sato K. ; Shikida M. ; Yamashiro T. ; Tsunekawa M. ; Ito S.. Sens. Actuators A 1999, 73, 122. doi: 10.1016/S0924-4247(98)00270-2
[34]  13 Xu K. Chem. Rev 2014, 114, 11503. doi: 10.1021/cr500003w
[35]  14 Nie M. ; Chalasani D. ; Abraham D. P. ; Chen Y. ; Bose A. ; Lucht B. L. J. Phys. Chem. C 2013, 117, 1257. doi: 10.1021/jp3118055
[36]  15 Philippe B. ; Dedryvère R. ; Gorgoi M. ; Rensmo H. ; Gonbeau D. ; Edstr?m K. Chem. Mater 2013, 25, 394. doi: 10.1021/cm303399v
[37]  17 Sacci R. L. ; Dudney N. J. ; More K. L. ; Parent L. R. ; Arslan I. ; Browning N. D. ; Unocic R. R. Chem. Commun 2014, 50, 2104. doi: 10.1039/c3cc49029g
[38]  18 Baddour-Hadjean R. ; Pereira-Ramos J. P. Chem. Rev 2009, 110, 1278. doi: 10.1021/cr800344k
[39]  26 Demirocak D. E. ; Bhushan B. J. Colloid Interface Sci 2014, 423, 151. doi: 10.1016/j.jcis.2014.02.035
[40]  27 Liu X. R. ; Wang D. ; Wan L. J. Sci. Bull 2015, 60, 839. doi: 10.1007/s11434-015-0763-6
[41]  30 Beaulieu L. Y. ; Hatchard T. D. ; Bonakdarpour A. ; Fleischauer M. D. ; Dahn J. R. J. Electrochem. Soc 2003, 150, A1457. doi: 10.1149/1.1613668
[42]  38 Gosalvez, M.; Nieminen, R. New J. Phys. 2003, 5, 100. doi: http://dx.doi.org/10.1088/1367-2630/5/1/400.
[43]  40 Guzman H. V. ; Perrino A. P. ; Garcia R. ACS Nano 2013, 7, 3198. doi: 10.1021/nn4012835
[44]  41 Alsteens D. ; Dupres V. ; Yunus S. ; Latgé J. P. ; Heinisch J. J. J. ; Dufréne Y. F. Langmuir 2012, 28, 16738. doi: 10.1021/la303891j
[45]  42 Wind R. A. ; Jones H. ; Little M. J. ; Hines M. A. J. Phys. Chem. B 2002, 106, 1557. doi: 10.1021/jp011361j

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133