通过探讨氧化钛纳米线阵列反应机制,建立了在水热条件下,氧化钛纳米线阵列在亲水掺铟氧化锡表面上由极性/非极性溶剂体系中形成的胶束内反应并生长的模型.并由此利用微胶束的尺寸限制作用,通过温度对微胶束尺寸进行调节,以及Cl-离子的晶面限制效应,实现了在较大范围内对纳米线直径的调控.另外反应体系中极性与非极性溶液的比例的变化对纳米阵列的直径影响不大,因此可以认为在此反应体系中,氧化钛纳米线的直径主要受到微胶束的限域效应以及Cl-离子的晶面限制效应影响.此方法可应用于其他相关氧化物纳米材料的尺寸控制合成中. We establish a model for growing titania nanowires arrays (TNAs) within micelles on the hydrophilic substrate of fluorine-doped tin oxide (FTO) in a reversed micelle reaction under hydrothermal conditions, and we discuss the mechanism that micelle size controlled the diameter in the TNAs growth progress. We produced TNAs with various diameters on FTO by adjusting the temperature, which changed the micelle size, and by using the crystal-plane suppressing effect of the Cl- ion. The volume ratio of the polar/nonpolar solvent barely influenced the nanowire diameter during growth. Based on this result, thinner TNAs can be prepared by using the restricting effect of the micelles and the crystal-plane suppressing effect of the Cl- ion. This method can also be used to synthesize other relative oxide nanomaterials
References
[1]
1 Cao C. ; Hu C. ; Wang X. ; Wang S. ; Tian Y. ; Zhang H. Sensors and Actuators B: Chemical 2011, 156, 114. doi: 10.1016/j.snb.2011.03.080
[2]
16 Zhou Z. J. ; Fan J. Q. ; Wang X. ; Zhou W. H. ; Du Z. L. ; Wu S. X. ACS Applied Materials & Interfaces 2011, 3, 4349. doi: 10.1021/am201001t
[3]
17 Zhen W. ; Yu Y. ; Tao H. ; Aishui Y. Int. J. Electrochem. Sci 2011, 6, 1871.
[4]
20 Kong E. H. ; Yoon Y. H. ; Chang Y. J. ; Jang H. M. Materials Chemistry and Physics 2014, 143, 1440. doi: 10.1016/j.matchemphys.2013.11.060
[5]
童钧耕,王阳平,苏永康.热工基础.上海:上海交通大学出版社, 2008: 230.
[6]
3 Kim H. S. ; Nguyen D. T. ; Shin E. C. ; Lee J. S. ; Lee S. K. ; Ahn K. S. ; Kang S. H. Electrochimica Acta 2013, 114, 159. doi: 10.1016/j.electacta.2013.09.170
[7]
6 Yang H. Y. ; Cheng X. L. ; Zhang X. F. ; Zheng Z. K. ; Tang X. F. ; Xu Y. M. ; Gao S. ; Zhao H. ; Huo L. H. Sensors and Actuators B: Chemical 2014, 205, 322. doi: 10.1016/j.snb.2014.08.092
[8]
7 Cozzoli P. D. ; Kornowski A. ; Weller H. Journal of the American Chemical Society 2003, 125, 14539. doi: 10.1021/ja036505h
[9]
8 Nelson J. Current Opinion in Solid State and Materials Science 2002, 6, 87. doi: 10.1016/S1359-0286(02)00006-2
[10]
9 Sun L. ; Zuo J. ; Lai Y. K. ; Nie C. G. ; Lin C. J. Acta Phys. -Chim.Sin 2007, 23 (10), 1603. doi: 10.3866/PKU.WHXB20071021
10 Han Y. ; Fan C. ; Wu G. ; Chen H. Z. ; Wang M. The Journal of Physical Chemistry C 2011, 115, 13438. doi: 10.1021/jp201413m
[13]
11 Kang S. H. ; Lee W. ; Kim H. S. Materials Letters 2012, 85 (74) doi: 10.1016/j.matlet.2012.06.065
[14]
13 Liu B. ; Aydil E. S. Journal of the American Chemical Society 2009, 131, 3985. doi: 10.1021/ja8078972
[15]
14 Wang J. ; Zhang T. ; Wang D. ; Pan R. ; Wang Q. ; Xia H. Journal of Alloys and Compounds 2013, 551, 82. doi: 10.1016/j.jallcom.2012.09.113
[16]
19 Jiang D. ; Hao Y. ; Shen R. ; Ghazarian S. ; Ramos A. ; Zhou F. ACS Applied Materials & Interfaces 2013, 5, 11906. doi: 10.1021/am4036042
[17]
21 Wei Z. ; Li R. ; Huang T. ; Yu A. Electrochimica Acta 2011, 56, 7696. doi: 10.1016/j.electacta.2011.06.038
[18]
23 Tong, J. G.; Wang, Y. P.; Su , Y. K. Fundamental of Thermo-technology; Shanghai Jiao Tong University Press: Shanghai, 2008: p 230.
[19]
24 Liu, G. Q.; Ma, L. X.; Liu, J. Chemical Property Data Sheet; Chemical Industry Press: Beijing, 2002: p 311.
[20]
刘光启,马连湘,刘杰.化学化工物性数据手册.北京:化学工业出版社, 2002: 311.
[21]
2 Inaba M. ; Oba Y. ; Niina F. ; Murota Y. ; Ogino Y. ; Tasaka A. ; Hirota K. Journal of Power Sources 2009, 189, 580. doi: 10.1016/j.jpowsour.2008.10.001
[22]
4 Liao M. Y. ; Fang L. ; Xu C. L. ; Wu F. ; Huang Q. L. ; Saleem ; M . Materials Science in Semiconductor Processing 2014, 24, 1. doi: 10.1016/j.mssp.2014.02.037
[23]
5 Liu G. ; Zhang M. ; Zhang D. ; Gu X. ; Meng F. ; Wen S. ; Chen Y. ; Ruan S. Applied Surface Science 2014, 315, 55. doi: 10.1016/j.apsusc.2014.07.115
[24]
12 Kumar A. ; Madaria A. R. ; Zhou C. The Journal of Physical Chemistry C 2010, 114, 7787. doi: 10.1021/jp100491h
[25]
15 Zhou Z. ; Tang H. ; Sodano H. A. ACS Applied Materials & Interfaces 2013, 5, 11894. doi: 10.1021/am403587q
[26]
18 Feng X. ; Shankar K. ; Varghese O. K. ; Paulose M. ; Latempa T. J. ; Grimes C. A. Nano Letters 2008, 8, 3781. doi: 10.1021/nl802096a
[27]
22 Zhang M. ; Li D. ; Zhou J. ; Chen W. ; Ruan S. Journal of Alloys and Compounds 2015, 618, 233. doi: 10.1016/j.jallcom.2014.07.040
[28]
25 Fu, X. C.; Shen, W. X.; Yao, T. Y.; Hou, W. H. Physical Chemistry; Higher Education Press: Beijing, 2006: p 315.