全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201605101

Full-Text   Cite this paper   Add to My Lib

Abstract:

结合静态模型计算和实验测试,从活化过电势、欧姆损失和浓差过电势三个方面量化分析了阴极Pt负载量和背压协同对质子膜燃料电池(PEMFC)性能的影响规律。考察了阴极Pt负载量为0.1、0.2、0.4mg·cm-2,背压为100、150、200kPa条件下的燃料电池性能。通过比较发现,在上述条件任意组合下,随着电流密度增加,活化过电势、欧姆损失和浓差过电势逐渐加大,直接影响燃料电池性能;但在相同背压条件下,随着电流密度增加,低Pt负载量时的浓差过电势比高Pt负载量时增加得更快;同时发现,背压增加对提高燃料电池的性能有帮助,但背压增加对低Pt负载量比对高Pt负载量效果更明显。因此对于低Pt燃料电池,应适当提高运行背压以优化其性能。本文对上述实验结果的产生机理进行了探讨,并期望该结果能对低Pt/超低Pt燃料电池的设计及性能优化提供参考与借鉴。
By combining theoretical calculations with experimental data,this study quantified the effects of both cathode Pt loading and operating backpressure on polymer electrolyte membrane fuel cell (PEMFC) performance,in terms of the kinetic,ohmic and transport losses.Pt loadings of 0.1,0.2 and 0.4 mg·cm-2 were investigated at backpressure values of 100,150 and 200 kPa,respectively.The results indicate that,under all conditions,the kinetic,ohmic and transport losses all increased with the increase in current density.However, under the equivalent backpressure the transport loss of a PEMFC decreased with the increase of Pt loading.It was also found that increasing the operating backpressure improved the cell performance,and this enhancement in performance was more pronounced at a lower Pt loading.This result indicates an appropriate increase in operating backpressure should benefit the performance of a low-Pt loading PEMFC.Finally,the mechanism responsible for the observed phenomena was discussed.This study is expected to be helpful in the design and performance optimization of PEMFCs with low or ultra-low Pt loadings

References

[1]  10 Zhang J.L. ; Tang Y.H. ; Song C.J. ; Xia Z.T. ; Li H. ; Wang H.J. ; Zhang J.J. Electrochimica Acta 2008, 53 (16), 5315. doi: 10.1016/j.electacta.2008.02.074
[2]  Bard, A.J.Faulkner L.R.电化学方法原理和应用.第二版.邵元华,朱果逸,董献堆,张柏林译.北京:化学工业出版社, 2005: 69-70.
[3]  2 Wang H.J. ; Cheng J. ; Zhang R.Y. ; Wang P.J. ; Ren Y.Q. ; Xu S.S. Thermal Power Generation 2016, 45 (3), 1. doi: 10.3969/j.issn.1002-3364.2016.03.001
[4]  3 Owejan J.P. ; Owejan J.E. ; Gu W.B. J.Electrochem.Soc. 2013, 160 (8), F824. doi: 10.1149/2.072308jes
[5]  11 Ozen D.N. ; Timurkutluk B. ; Altinisik K. Renew Sust.Energ.Rev 2016, 59, 1298. doi: 10.1016/j.rser.2016.01.040
[6]  12 Murthy M. ; Esayian M. ; Lee W.K. ; Van Zee J.W. J.Electrochem.Soc 2003, 150 (1) doi: 10.1149/1.1522383
[7]  17 Cao D.X. ; Wang G.L. ; Lü Y.Z. Fuel Cell System, 1st ed Beijing: Beihang University Press, 2009, 45- 46.
[8]  曹殿学; 王贵领; 吕艳卓. 料电池系统, 第一版 北京: 北京航空航天大学出版社, 2009, 45- 46.
[9]  1 Shang M.F. ; Duan P.Q. ; Zhao T.T. ; Tang W.C. ; Lin R. ; Huang Y.Y. ; Wang J.Q. Acta Phys.-Chim.Sin 2015, 31 (8), 1609. doi: 10.3866/PKU.WHXB201505252
[10]  尚明丰; 段佩权; 赵天天; 唐文超; 林瑞; 黄宇营; 王建强. 物理化学学报, 2015, 31 (8), 1609. doi: 10.3866/PKU.WHXB201505252
[11]  王洪建; 程健; 张瑞云; 王鹏杰; 任永强; 许世森. 热力发电, 2016, 45 (3), 1. doi: 10.3969/j.issn.1002-3364.2016.03.001
[12]  4 Fofana D. ; Natarajan S.K. ; Bénard P. ; Hamelin J. ISRN Electrochemistry 2013, 2013, 174834. doi: 10.1155/2013/174834
[13]  5 Wilson M.S. ; Valerio J.A. ; Gottesfeld S. Electrochimica Acta 1995, 40 (3), 355. doi: 10.1016/0013-4686(94)00272-3
[14]  6 Yu H.R. ; Baricci A. ; Roller J. ; Wang Y. ; Casalegno A. ; Mustain W.E. ; Maric R. ECS Trans 2015, 69 (17), 487. doi: 10.1149/06917.0487ecst
[15]  7 ??genliM.S.; MukerjeeS.; YurtcanA.B.. Fuel Cells, 2015, 15 (2), 288. doi: 10.1002/fuce.201400062
[16]  8 Yu H.R. ; Roller J.M. ; Mustain W.E. ; Maric R.J. Power Sources 2015, 283, 84. doi: 10.1016/j.jpowsour.2015.02.101
[17]  9 Wu J. ; Yuan X.Z. ; Martin J.J. ; Wang H.J. ; Zhang J.J. J.Power Sources 2008, 184 (1), 104. doi: 10.1016/j.jpowsour.2008.06.006
[18]  13 Zhang J.J. ; Song C.J. ; Zhang J.L. ; Baker R. ; Zhang L. J.Electroanal.Chem 2013, 688, 130. doi: 10.1016/j.jelechem.2012.09.033
[19]  14 Wang L. ; Husar A. ; Zhou T.H. ; Liu H.T. Int.J.Hydrog.Energy 2003, 28 (11), 1263. doi: 10.1016/S0360-3199(02)00284-7
[20]  15 Wang L. ; Liu H.T. J.Power Sources 2004, 134 (2), 185. doi: 10.1016/j.jpowsour.2004.03.055
[21]  16 Corrêa J.M. ; Farret F.A. ; Canha L.N. ; Sim?es M.G. IEEE Trans.Ind.Electron 2004, 51 (5), 1103. doi: 10.1109/TIE.2004.834972
[22]  18 Bard A.J.; Faulkner L.R.Electrochemical Methods Fundamentals and Applications 2nd ed.; Chemical Industry Press: Beijing, 2005; pp 69-70; translated by Shao Y.H.; Zhu, G.Y.Dong, X.D.; Zhang, B.L.
[23]  19 Kocha S.S.Principles of MEA Preparation.http://onlinelibrary.wiley.com/doi/10.1002/9780470974001.f303047/pdf (accessed Dec 10, 2015).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133