全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 


DOI: 10.3866/PKU.WHXB201704104

Full-Text   Cite this paper   Add to My Lib

Abstract:

我们报道了一种Pd/Co3O4纳米颗粒负载于Al2O3纳米片的三元催化剂催化甲烷的高效燃烧。其中,Pd/Co3O4负载于碱性氧化铝的复合材料活化甲烷C-H键的能力比SiO2、ZrO2和CeO2以及酸性和中性Al2O3为载体时更强,这是因为Pd/Co3O4/碱性Al2O3拥有更多的氧空穴和吸附氧,对催化剂催化甲烷燃烧有较好的影响。尽管在5%(体积分数)的水蒸气存在下,其催化性能有一定的失活,但在移除水蒸气时,其催化性能可以快速恢复至最佳状态。在模拟真实汽车尾气的氛围下,Pd/Co3O4/碱性Al2O3依然具有较好的催化甲烷燃烧性能,在400℃时可以催化甲烷完全转化。
We report an efficient catalyst composed of ternary components prepared by inlaying Pd/Co3O4 nanoparticles in alkaline Al2O3 nanosheets for catalytic oxidation of methane. Pd/Co3O4 inlaid in alkaline Al2O3 exhibited a higher ability to break the C-H bond of methane than Pd/Co3O4 supported on SiO2, ZrO2, CeO2, and acidic or neutral Al2O3. Our results show more oxygen vacancies and higher amounts of surface adsorbed oxygen on the surface of Pd/Co3O4/alkaline Al2O3 than on other catalysts, which is responsible for methane activation and conversion. Further, the Pd/Co3O4/alkaline Al2O3 catalyst can almost restore to its initial value in the absence of water when 5% (volume fraction) vapor water was cut off, although a decrease in activity occurred when water vapor was introduced to the reaction system. Even under a condition similar to the exhaust of a lean-burn natural gas engine, the catalytic performance of the Pd/Co3O4/alkaline Al2O3 catalyst is excellent, that is, methane could be completely converted when the sample temperature in the reaction atmosphere was ramped to 400℃

References

[1]  22 Yoshida H. ; Nakajima T. ; Yazawa Y. ; Hattori T. Appl. Catal. B 2007, 71, 70. doi: 10.1016/j.apcatb.2006.08.010
[2]  1 Choudhary T. V. ; Banerjee S. ; ChoudharyV.R. Appl. Catal. A 2002, 234, 1. doi: 10.1016/S0926-860X(02)00231-4
[3]  2 Gélin P. ; Primet M.. Appl. Catal.: B 2002, 39, 1. doi: 10.1016/S0926-3373(02)00076-0
[4]  3 Tang P. ; Zhu Q. ; Wu Z. ; Ma D. Energy Environ Sci. 2014, 7, 2580. doi: 10.1039/C4EE00604F
[5]  4 Song J. ; Sun Y. ; Ba R. ; Huang S. ; Zhao Y. ; Zhang J. ; Sun Y. ; Zhu Y. Nanoscale 2015, 7, 2260. doi: 10.1039/c4nr06660j
[6]  5 Yuan K. ; Zhong J. ; Zhou X. ; Xu L. ; Bergman S. L. ; Wu K. ; Xu G. ; Bernasek S. L. ; Li H. ; Chen W. ACS Catal. 2016, 6, 4330. doi: 10.1021/acscatal.6b00357
[7]  6 Chen L. ; Zhang X. ; Huang L. ; Lei L. Chem. Eng. Process. 2009, 48, 1333. doi: 10.1016/j.cep.2009.06.007
[8]  7 Wang Q. ; Peng Y. ; Fu J. ; Kyzas G. Z. ; Billah S. M. R. ; An S. Appl. Catal. B 2015, 168-169, 42. doi: 10.1016/j.apcatb.2014.12.016
[9]  8 Najjar H. ; Batis H. ; Lamonier J. F. ; Mentré O. ; Giraudon J. M. Appl. Catal. A 2014, 469, 98. doi: 10.1016/j.apcata.2013.09.014
[10]  11 Ciuparu D. ; Lyubovsky M. R. ; Altman E. ; Pfefferle L. D. ; Datye A. Catal. Rev. 2002, 44, 593. doi: 10.1081/CR-120015482
[11]  14 Niu F. ; Li S. ; Zong Y. ; Yao Q. J.Phys. Chem. C 2014, 118, 19156. doi: 10.1021/jp504859d
[12]  17 Li H. ; Lu G. ; Qiao D. ; Wang Y. ; Guo Y. Catal. Lett. 2011, 141, 452. doi: 10.1007/s10562-010-0513-y
[13]  18 Cimino S. ; Lisi L. ; Pirone R. ; Russo G. ; Turco M. Catal. Today 2000, 59, 19. doi: 10.1016/S0920-5861(00)00269-8
[14]  19 Li S. ; Wang X. Catal. Commun. 2007, 8, 410. doi: 10.1016/j.catcom.2006.07.011
[15]  21 Wang X. ; Guo Y. ; Lu G. ; Hu Y. ; Jiang L. ; Guo Y. ; Zhang Z. Catal. Today 2007, 126, 369. doi: 10.1016/j.cattod.2007.06.011
[16]  23 Ercolino G. ; Grodzka A. ; Grzybek G. ; Stelmachowski P. ; Specchia S. ; Kotarba A. Top. Catal. 2017, 3, 333. doi: 10.1007/s11244-016-0620-0
[17]  27 Cargnello M. ; Delgado J. J. ; Hernandez J. C. ; Bakhmutsky K. ; Montini T. ; Calvino J. J. ; Gorte R. J. ; Fornasiero P. Science 2012, 337, 713. doi: 10.1126/science.1222887
[18]  28 Wu Z. ; Deng J. ; Liu Y. ; Xie S. ; Jiang Y. ; Zhao X. ; Yang J. ; Arandiyan H. ; Guo G. ; Dai H. J.Catal. 2015, 332, 13. doi: 10.1016/j.jcat.2015.09.008
[19]  29 Giraudon J. M. ; Elhachimi A. ; Leclercq G. Appl. Catal. B 2008, 84, 251. doi: 10.1016/j.apcatb.2008.04.023
[20]  30 Liu Y. ; Dai H. ; Deng J. ; Xie S. ; Yang H. ; Tan W. ; Han W. ; Jiang Y. ; Guo G. J.Catal. 2014, 309, 408. doi: 10.1016/j.jcat.2013.10.019
[21]  31 Xie S. ; Deng J. ; Zang S. ; Yang H. ; Guo G. ; Arandiyan H. ; Dai H. J.Catal. 2014, 322, 38. doi: 10.1016/j.jcat.2014.09.024
[22]  9 Okal J. ; Zawadzki M. Appl. Catal. A 2013, 453, 349. doi: 10.1016/j.apcata.2012.12.040
[23]  10 Massias A. ; Diamantis D. ; Mastorakos E. ; Goussis D. Combust. Theor. Model. 1999, 3, 233. doi: 10.1088/1364-7830/3/2/002
[24]  12 Zou X. ; Rui Z. ; Song S. ; Ji H. J. Catal. 2016, 338, 192. doi: 10.1016/j.jcat.2015.12.031
[25]  13 Sun Y. ; Liu J. ; Song J. ; Huang S. ; Yang N. ; Zhang J. ; Sun Y. ; Zhu Y. ChemCatChem 2016, 8, 540. doi: 10.1002/cctc.201000407
[26]  15 Di G. ; Melaet G. ; Kruse N. ; Liotta L. F. ; Pantaleo G. ; Venezia A. M. Chem. Commun. 2010, 46, 6317. doi: 10.1039/C0CC00723D
[27]  16 Hoffmann M. ; Kreft S. ; Georgi G. ; Fulda G. ; Pohl M. M. ; Seeburg D. ; Berger-Karin C. ; Kondratenko E. V. ; Wohlrab S. Appl. Catal. B 2015, 179, 313. doi: 10.1016/j.apcatb.2015.05.028
[28]  20 Kucharczyk B. ; Tylus W. Catal. Today 2008, 137, 324. doi: 10.1016/j.cattod.2008.05.018
[29]  24 Ercolino G. ; Grzybek G. ; Stelmachowski P. ; Specchia S. ; Kotarba A. ; Specchia V. Catal. Today 2015, 257, 66. doi: 10.1016/j.cattod.2015.03.006
[30]  25 Hu L. ; Peng Q. ; Li Y. ChemCatChem 2011, 3, 868. doi: 10.1002/cctc.201000407
[31]  26 Xu J. ; Ouyang L. ; Mao W. ; Yang X. ; Xu X. ; Su J. ; Zhuang T. ; Li H. ; Han Y. ACS Catal. 2012, 2, 261. doi: 10.1021/acscatal.6b00357
[32]  32 Tao F. F. ; Shan J. ; Nguyen L. ; Wang Z. ; Zhang S. ; Zhang L. ; Wu Z. ; Huang W. ; Zeng S. ; Hu P. Nat. Commun. 2015, 6, 1. doi: 10.1038/ncomms8798
[33]  33 Gelin P. ; Urfels L. ; Primet M. ; Tena E. Catal. Today. 2003, 83, 45. doi: 10.1016/S0920-5861(03)00215-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133