全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 


DOI: 10.3866/PKU.WHXB201510201

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用水热合成方法制备含锰的SAPO-34分子筛(MnSAPO-34)催化剂,考察了锰投加量、焙烧温度及晶化时间对催化剂氨选择性催化还原(SCR)氮氧化物反应活性的影响,并通过X射线光电子能谱(XPS)、程序升温还原(TPR)、程序升温脱附(TPD)等多种分析手段对催化剂进行表征.活性测试结果表明,当MnO与P2O5的摩尔比n(MnO)/n(P2O5)= 0.1,采用6 h晶化时间, 550 ℃焙烧制备的MnSAPO-34分子筛具有最佳SCR活性, NOx转化率接近100%, N2选择性高于80%.分析结果表明, Mn的引入对分子筛的晶体及多孔结构有较大影响,过多的引入会降低结晶度及产生非骨架锰氧化物,同时还会降低分子筛的比表面积和孔容,但焙烧温度的降低以及晶化时间的缩短可以提高分子筛的比表面积和孔容.高温焙烧后分子筛表面出现了高氧化态锰物种,以Mn4+为主,而提高Mn3+的比例则有利于提高催化活性.在适当的合成条件下, Mn的引入可增强分子筛对NO和NH3分子的吸附,而强吸附态NO及强吸附态NH3的相互作用可能是催化活性快速提高的原因.
A series of MnSAPO-34 molecular sieves were synthesized by a hydrothermal method for selective catalytic reduction (SCR) of NO with NH3 and characterized using X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), and temperature-programmed desorption (TPD). Three factors were studied, including Mn-loading, calcination temperature, and synthesis time. The MnSAPO-34, which was synthesized in 6 h and calcined at 550 ℃ with the Mn-loading (n(MnO)/n(P2O5)= 0.1), exhibits the highest activity among all the samples, with NOx conversion of almost 100% and N2 selectivity higher than 80%. The results show that the porous and crystalline structures of MnSAPO-34 are greatly affected by addition of manganese, and excessive Mn-loading could result in lower crystallinity and the generation of nonframework manganese oxides. Meanwhile, a decrease in specific surface area and pore volume are observed in MnSAPO-34 with higher Mn-loading; however, the opposite characteristics are observed with a decreasing calcination temperature and shorter synthesis time. Manganese species of high oxidation state, mostly Mn4+, are shown to be on the catalysts surface after high temperature calcination, and the increase ratio of Mn3+ could help to improve the catalytic activity. Under proper synthesis conditions, the incorporation of manganese could improve the adsorption of nitric oxide and ammonia, and the interaction between the strongly adsorbed NO and strongly adsorbed NH3 might be the reason for the enhancement in their catalytic efficiency

References

[1]  8 Xue J. J. ; Wang X. Q. ; Qi G. S. ; Wang J. ; Shen M. Q. ; Li W. J.Catal 2013, 297, 56. doi: 10.1016/j.jcat.2012.09.020
[2]  9 Wang J. ; Yu T. ; Wang X. Q. ; Qi G. S. ; Xue J. J. ; Shen M. Q. ; Li W. Appl. Catal. B-Environ 2012, 127, 137. doi: 10.1016/j.apcatb.2012.08.016
[3]  10 Ye Q. ; Wang L. F. ; Yang R. T. Appl. Catal. A-Gen 2012, 427
[4]  11 Martínez-Franco R. ; Moliner M. ; Franch C. ; Kustov A. ; Corma A. Appl. Catal. B-Environ 2012, 127, 273. doi: 10.1016/j.apcatb.2012.08.034
[5]  12 Martínez-Franco R. ; Moliner M. ; Concepcion P. ; Thogersen J. R. ; Corma A. J.Catal 2014, 314, 73. doi: 10.1016/j.jcat.2014.03.018
[6]  13 Deka U. ; Lezcano-Gonzalez I. ; Warrender S. J. ; Picone A. L. ; Wright P. A. ; Weckhuysen B. M. ; Beale A. M. Microporous Mesoporous Mat 2013, 166, 144. doi: 10.1016/j.micromeso.2012.04.056
[7]  14 Wei Y. X. ; He Y. L. ; Zhang D. Z. ; Xu L. ; Meng S. H. ; Liu Z. M. ; Su B. L. Microporous Mesoporous Mat 2006, 90, 188. doi: 10.1016/j.micromeso.2005.10.042
[8]  20 Kapteijn F. ; Singoredjo L. ; Andreini A. ; Moulijn J. A. Appl. Catal. B-Environ 1994, 3, 173. doi: 10.1016/0926-3373(93)E0034-9
[9]  22 Thomas J. M. ; Greaves G. N. Science 1994, 265, 1675.
[10]  31 Vieira A. ; Tovar M. A. ; Pfaff C. ; Betancourt P. ; Méndez B. ; López C. M. ; Machado F. J. ; Goldwasser J. ; de Agudelo M. M. R. ; Houalla M. J. Mol. Catal. A-Chem 1999, 144, 101. doi: 10.1016/S1381-1169(98)00338-0
[11]  39 Fang C. ; Zhang D. S. ; Shi L. Y. ; Gao R. H. ; Li H. R. ; Ye L. P. ; Zhang J. P. Catal. Sci. Technol 2013, 3, 803. doi: 10.1039/C2CY20670F
[12]  黄萍; 盘思伟; 黄碧纯; 程华; 叶代启; 吴军良; 付名利; 卢圣良. 物理化学学报, 2013, 29, 176. doi: 10.3866/PKU.WHXB201210094
[13]  杨超; 刘小青; 黄碧纯; 吴友明. 物理化学学报, 2014, 30, 1895. doi: 10.3866/PKU.WHXB201407162
[14]  15 Tu?ar N. N. ; Mali G. ; Ar?on I. ; Kau?i? V. ; Ghanbari-Siahkali A. ; Dwyer J. Microporous Mesoporous Mat 2002, 55, 203. doi: 10.1016/S1387-1811(02)00404-3
[15]  16 Raji? N. ; Stojakovi? D. ; Ho?evar S. ; Kau?i? V. Zeolites 1993, 12, 384. doi: 10.1016/0144-2449(93)90154-U
[16]  5 Huang P. ; Pan S. W. ; Huang B. C. ; Cheng H. ; Ye D. Q. ; Wu J. L. ; Fu M. L. ; Lu S. L. Acta Phys. -Chim. Sin 2013, 29, 176. doi: 10.3866/PKU.WHXB201210094
[17]  6 Yang C. ; Liu X. Q. ; Huang B. C. ; Wu Y. M. Acta Phys. -Chim. Sin 2014, 30, 1895. doi: 10.3866/PKU.WHXB201407162
[18]  7 Yu C. L. ; Huang B. C. ; Yang Y. X. Journal of South China University of Technology (Natural Science Edition) 2015, 3, 143.
[19]  喻成龙; 黄碧纯; 杨颖欣. 华南理工大学学报(自然科学版), 2015, 3, 143.
[20]  21 Tian P. ; Liu Z. M. ; Wu Z. B. ; Xu L. ; He Y. L. Catal. Today 2004, 93- 95, 735..
[21]  25 Risti? A. ; Logar N. Z. ; Henninger S. K. ; Kau?i? V. Adv. Funct. Mater 2012, 22, 1952. doi: 10.1002/adfm.201102734
[22]  26 Ponce S. ; Peňa M. A. ; Fierro J. L. G. Appl. Catal. B-Environ 2000, 24, 193. doi: 10.1016/S0926-3373(99)00111-3
[23]  27 Kang M. ; Park E. D. ; Kim J. M. ; Yie J. E. Appl. Catal. A-Gen 2007, 327, 261. doi: 10.1016/j.apcata.2007.05.024
[24]  29 Lu X. ; Song C. ; Chang C. ; Teng Y. ; Tong Z. ; Tang X. Ind. Eng. Chem. Res 2014, 53, 11601. doi: 10.1021/ie5016969
[25]  30 Park E. ; Kim M. ; Jung H. ; Chin S. ; Jurng J. ACS Catal 2013, 3, 1518. doi: 10.1021/cs3007846
[26]  34 Guan B. ; Lin H. ; Zhu L. ; Huang Z. J.Phys. Chem. C 2011, 115, 12850. doi: 10.1021/jp112283g
[27]  35 Shu Y. ; Sun H. ; Quan X. ; Chen S. J.Phys. Chem. C 2012, 116, 25319. doi: 10.1021/jp307038q
[28]  36 Yu C. L. ; Wang L. S. ; Huang B. C. Aerosol Air Qual. Res 2015, 15, 1017.
[29]  37 Vishwanathan V. ; Jun K. W. ; Kim J. W. ; Roh H. S. Appl. Catal. A-Gen 2004, 276, 251.
[30]  38 Jin R. B. ; Liu. Y. ; Wu Z. B. ; Wang H. Q. ; Gu T. T. Catal. Today 2010, 153, 84. doi: 10.1016/j.cattod.2010.01.039
[31]  1 Qi G. S. ; Yang R. T. Appl. Catal. B-Environ 2003, 44, 217. doi: 10.1016/S0926-3373(03)00100-0
[32]  2 Fang C. ; Zhang D. S. ; Cai S. X. ; Zhang L. ; Huang L. ; Li H. R. ; Maitarad P. ; Shi L. Y. ; Gao R. H. ; Zhang J. P. Nanoscale 2013, 5, 9199. doi: 10.1039/c3nr02631k
[33]  3 Wang L. S. ; Huang B. C. ; Su Y. X. ; Zhou G. Y. ; Wang K. L. ; Luo H. C. ; Ye D. Q. Chem. Eng. J 2012, 192, 232. doi: 10.1016/j.cej.2012.04.012
[34]  4 Su Y. X. ; Fan B. X. ; Wang L. S. ; Liu Y. F. ; Huang B. C. ; Fu M. L. ; Chen L. M. ; Ye D. Q. Catal. Today 2013, 201, 115. doi: 10.1016/j.cattod.2012.04.063
[35]  17 Gu J. F. ; Agula B. ; Jia M. L. ; Liu Y. P. ; Zhaorigetu B. ; Yuan Z. Y. Chin.J.Catal 2010, 31, 322.
[36]  顾建峰; 阿古拉; 贾美林; 刘玉萍; 照日格图; 袁忠勇. 催化学报, 2010, 31, 322.
[37]  18 Zhang R. Z. ; Zhao L. F. Impurity Atoms of Phosphorus Aluminum Molecular Sieve and Its Application Beijing: Chemical Industry Press, 2009.
[38]  张瑞珍; 赵亮富. 杂原子磷铝分子筛及应用, 北京: 化学工业出版社, 2009, 56- 57.
[39]  19 Qi G. S. ; Yang R. T. J.Phys. Chem. B 2004, 108, 15738. doi: 10.1021/jp048431h
[40]  23 Ramesh K. ; Chen L. W. ; Chen F. X. ; Liu Y. ; Wang Z. ; Han Y. F. Catal. Today 2008, 131, 477. doi: 10.1016/j.cattod.2007.10.061
[41]  24 Wang L. C. ; Liu Q. ; Huang X. S. ; Liu Y. M. ; Cao Y. ; Fan K. N. Appl. Catal. B-Environ 2009, 88, 204. doi: 10.1016/j.apcatb.2008.09.031
[42]  28 Akolekar D. B. ; Bhargava S. K. Appl. Catal. A-Gen 2001, 207, 355. doi: 10.1016/S0926-860X(00)00669-4
[43]  32 Wu Z. B. ; Jiang B. Q. ; Liu Y. ; Wang H. Q. ; Jin R. B. Environ. Sci. Technol 2007, 41, 5812. doi: 10.1021/es0700350
[44]  33 Liu F. D. ; He H. Catal. Today 2010, 153, 70. doi: 10.1016/j.cattod.2010.02.043

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133