制备具有氧还原(ORR)与氧释放(OER)双功能催化活性的特殊孔道结构电催化剂是锂氧电池研究的挑战之一。本文以氧化石墨烯、硝酸铁、硝酸镧、柠檬酸为原料,结合溶胶凝胶和水热合成方法,制备出还原氧化石墨烯(RGO)与铁酸镧(LaFeO3)复合的双功能催化剂(RGO-LaFeO3)。X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱和Raman光谱分析结果确认该复合催化剂由纯相钙钛矿结构LaFeO3和还原氧化石墨烯组成,扫描电子显微镜(SEM)观察到LaFeO3纳米颗粒均匀地负载在RGO片层表面。锂氧电池测试结果指出,相对于LaFeO3纳米粒子(NP-LaFeO3),RGO-LaFeO3催化剂具有更好的ORR和OER催化活性,归因于RGO特殊的三维导电多孔结构与LaFeO3纳米粒子的协同催化作用。以RGO-LaFeO3作为阴极催化剂的锂氧电池在限1000 mAh·g-1比容量、100 mA·g-1电流密度条件下,可实现36周稳定的充放电循环,展示出良好的应用前景。 Development of electrocatalysts is one of the challenges in the development of the lithium-oxygen battery, especially the synthesis of catalysts with special pore structures and excellent bifunctional catalytic performance for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). In this article, a reduced graphene oxide-LaFeO3 (RGO-LaFeO3) nanocomposite electrocatalyst was synthesized by combining sol-gel and hydrothermal methods and using graphene oxide, lanthanum nitrate, ferric nitrate, and citric acid as raw materials. The prepared samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and scanning electron microscopy. The results confirmed that the RGO-LaFeO3 was composed of pure phase LaFeO3 with a perovskite structure and RGO and that the LaFeO3 nanoparticles were loaded uniformly on the RGO layer surface. In comparison with a LaFeO3 nanoparticle (NP-LaFeO3) catalyst, RGO-LaFeO3 exhibited superior activity for both the ORR and the OER when it served as the cathode of a lithium-oxygen battery. The higher catalytic activity of the RGO-LaFeO3 is attributed to the synergistic effect of the special three-dimensional electronic conductive structure of RGO and the intrinsic catalytic property of LaFeO3. It was shown that the lithium-oxygen battery with the RGO-LaFeO3 cathode can be cycled stably up to 36 reversible cycles under conditions of a limit discharge depth of 1000 mAh·g-1 and a 100 mA·g-1 current density for charge-discharge. The study illustrates that the RGO-LaFeO3 bifunctional electrocatalyst is a promising candidate for the cathode in lithium-oxygen batteries
References
[1]
6 Liao K. M. ; Zhang T. ; Wang Y. Q. ; Li F.J. ; Jian Z. L. ; Yu H. J. ; Zhou H. S. ChemSusChem 2015, 8, 1429. doi: 10.1002/cssc.201403371
[2]
13 Peng Z. ; Freunberger S. A. ; Chen Y. ; Bruce P. G. Science 2012, 337, 563. doi: 10.1126/science.1223985
[3]
17 Xu Y. F. ; Chen Y. ; Xu G. L. ; Zhang X. R. ; Chen Z. ; Li J.T. ; Huang L. ; Amine K. ; Sun S. G. Nano Energy 2016, 28, 63. doi: 10.1016/j.nanoen.2016.08.009
[4]
1 Bruce P. G. ; Freunberger S. A. ; Hardwick L. J. ; Tarascon J. M. Nat. Mater. 2012, 11, 19. doi: 10.1038/nmat3191
[5]
2 Girishkumar G. ; McCloskey B. ; Luntz A. C. ; Swanson S. ; Wilcke W. J. Phys. Chem. Lett. 2010, 1, 2193. doi: 10.1021/jz1005384
[6]
3 Wu S. C. ; Tang J. ; Li F. J. ; Liu X. Z. ; Zhou H. S. Chem. Commun. 2015, 51, 16860. doi: 10.1039/c5cc06370a
[7]
4 Wang Z. L. ; Xu D. ; Xu J. J. ; Zhang X. B. Chem. Soc. Rev. 2014, 43, 7746. doi: 10.1039/c3cs60248f
[8]
7 Yang Z. ; Zhang W. ; Shen Y. ; Yuan L. X. ; Huang Y. H. Acta Phys. -Chim. Sin 2016, 32, 1062. doi: 10.3866/PKU.WHXB201603231
9 Wang Z. L. ; Xu D. ; Xu J. J. ; Zhang L. L. ; Zhang X. B. Adv. Funct. Mater. 2012, 22, 3699. doi: 10.1002/adfm.201200403
[11]
10 Tong S. ; Zheng M. ; Lu Y. ; Lin Z. ; Zhang X. ; He P. ; Zhou H. Chem. Commun. 2015, 51, 7302. doi: 10.1039/C5CC01114K
[12]
11 Jiang J. ; He P. ; Tong S. ; Zheng M. ; Lin Z. ; Zhang X. ; Shi Y. ; Zhou H. NPG Asia Mater. 2016, 8, e239. doi: 10.1038/am.2015.141
[13]
12 Lu J. ; Lee Y. J. ; Luo X. ; Lau K. C. ; Asadi M. ; Wang H.H. ; Brombosz S. ; Wen J. G. ; Zhai D. Y. ; Chen Z. H. ; Miller D. J. ; Jeong Y. S. ; Park J. B. ; Fang Z. Z. ; Kumar B. ; Amin S. K. ; Sun Y. K. ; Curtiss L. A. ; Amine K. Nature 2016, 529, 377. doi: 10.1038/nature16484
[14]
14 Leng L. M. ; Li J. ; Zeng X. Y. ; Song H. Y. ; Shu T. ; Wang H. S. J. Power Sources 2017, 337, 173. doi: 10.1016/j.jpowsour.2016.10.089
[15]
15 Débart A. ; Paterson A. J. ; Bao J. ; Bruce P. G. Angew. Chem. 2008, 120, 4597. doi: 10.1002/ange.200705648
[16]
16 Oh S. H. ; Black R. ; Pomerantseva E. ; Lee J. H. ; Nazar L. F. Nat. Chem. 2012, 4, 1004. doi: 10.1038/nchem.1499
[17]
18 Thotiyl M. M. O. ; Freunberger S. A. ; Peng Z. ; Chen Y. ; Liu Z. ; Bruce P. G. Nat. Mater. 2013, 12, 1050. doi: 10.1038/nmat3737
[18]
19 Liu G. ; Chen H. ; Xia L. ; Wang S. ; Ding L. X. ; Li D. ; Xiao K. ; Dai S. ; Wang H. ACS Appl. Mater. Interfaces 2015, 7, 22478. doi: 10.1021/acsami.5b06587
[19]
22 Chen F. Y. ; Xiao L. ; Yang C. X. ; Zhuang L. Acta Phys. -Chim. Sin. 2015, 31, 2310. doi: 10.3866/PKU.WHXB201510162
26 Gosavi P. V. ; Biniwale R. B. Mater. Chem. Phys. 2010, 119, 324. doi: 10.1016/j.matchemphys.2009.09.005
[24]
30 Jung K. N. ; Lee J. I. ; Im W. B. ; Yoon S. ; Shin K. H. ; Lee J. W. Chem. Commun. 2012, 48, 9406. doi: 10.1039/c2cc35302d
[25]
31 Feng N. ; He P. ; Zhou H. Adv. Energy Mater. 2016, 6, 1502303. doi: 10.1002/aenm.201502303
[26]
32 Aurbach D. ; McCloskey B. D. ; Nazar L. F. ; Bruces P. G. Nat. Energy 2016, 1, 16128. doi: 10.1038/nenergy.2016.128
[27]
5 Shao Y. ; Park S. ; Xiao J. ; Zhang J. G. ; Wang Y. ; Liu J. ACS Catal. 2012, 2, 844. doi: 10.1021/cs300036v
[28]
8 Xiao J. ; Mei D. ; Li X. ; Xu W. ; Wang D. ; Graff G. L. ; Bennett W.D. ; Nie Z. ; Saraf L. V. ; Aksay I. A. ; Liu J. ; Zhang J. G. Nano Lett. 2011, 11, 5071. doi: 10.1021/nl203332e
[29]
20 Xu J. J. ; Xu D. ; Wang Z. L. ; Wang H. G. ; Zhang L. L. ; Zhang X. B. Angew. Chem. Int, Ed. 2013, 52, 3887. doi: 10.1002/anie.201210057
[30]
21 Xu J. J. ; Wang Z. L. ; Xu D. ; Meng F. Z. ; Zhang X. B. Energy Environ. Sci. 2014, 7, 2213. doi: 10.1039/c3ee42934b
[31]
24 Dreyer D. R. ; Park S. ; Bielawski C. W. ; Ruoff R. S. Chem. Soc. Rev. 2010, 39, 228. doi: 10.1039/b917103g
[32]
23 Xiao F. X. ; Miao J. ; Liu B. J. Am. Chem. Soc. 2014, 136, 1559. doi: 10.1021/ja411651e
[33]
27 Krishnamoorthy K. ; Veerapandian M. ; Yun K. ; Kim S. J. Carbon 2013, 53, 38. doi: 10.1016/j.carbon.2012.10.013
[34]
28 Lu Y. C. ; Shao-Horn Y. J. Phys. Chem. Lett. 2013, 4, 93. doi: 10.1021/jz3018368
[35]
29 Jung H. G. ; Hassoun J. ; Park J. B. ; Sun Y. K. ; Scrosati B. Nat. Chem. 2012, 4, 579. doi: 10.1038/nchem.1376