By extending the Levy wavefunction constrained search to Fock Space, one can define a wavefunction constrained search for electron densities in systems having noninteger number of electrons. For pure-state v-representable densities, the results are equivalent to what one would obtain with the zero-temperature grand canonical ensemble. In other cases, the wavefunction constrained search in Fock space presents an upper bound to the grand canonical ensemble functional. One advantage of the Fock-space wavefunction constrained search functional over the zero-temperature grand-canonical ensemble constrained search functional is that certain specific excited states (i.e., those that are not ground-state v-representable) are the stationary points of the Fock-space functional. However, a potential disadvantage of the Fock-space constrained search functional is that it is not convex. By extending the Levy wavefunction constrained search to Fock Space, one can define a wavefunction constrained search for electron densities in systems having noninteger number of electrons. For pure-state v-representable densities, the results are equivalent to what one would obtain with the zero-temperature grand canonical ensemble. In other cases, the wavefunction constrained search in Fock space presents an upper bound to the grand canonical ensemble functional. One advantage of the Fock-space wavefunction constrained search functional over the zero-temperature grand-canonical ensemble constrained search functional is that certain specific excited states (i.e., those that are not ground-state v-representable) are the stationary points of the Fock-space functional. However, a potential disadvantage of the Fock-space constrained search functional is that it is not convex
References
[1]
2 Parr R. G. ; Yang W. Density-Functional Theory of Atoms and Molecules Oxford UP: New York, NY, USA, 1989.
[2]
6 Levy M. ; Perdew J. P. The Constrained Search Formulation of Density Functional Theory. In Density Functional Methods in Physics, NATO ASI Series (Series B: Physics), Vol. 123; Dreizler, R. M., da Providência, J. Eds. Springer: Boston, MA, USA. doi: 10.1007/978-1-4757-0818-9_2
[3]
7 Perdew J. P. ; Levy M. Phys. Rev. B 1985, 31, 6264. doi: 10.1103/PhysRevB.31.6264
[4]
12 Levy M. ; Nagy A. Phys. Rev. A 1999, 59, 1687. doi: 10.1103/PhysRevA.59.1687
[5]
14 Nagy A. ; Levy M. Ayers P. W. Time-Independent Theory for a Single Excited State. In Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed. Taylor and Francis: Boca Raton, FL, USA, 2009, 121.
[6]
15 Ayers P. W. ; Levy M. Phys. Rev. A 2009, 80, 012508. doi: 10.1103/PhysRevA.80.012508
[7]
20 Glushkov V. N. ; Levy M. J. Chem. Phys. 2007, 126, 174106. doi: 10.1063/1.2733657
[8]
22 Ayers P. W. Variational Principles for Understanding Chemical Reactions. Ph.D. Dissertation University of North Carolina: Chapel Hill, NV, USA, 2001.
[9]
23 Perdew J. P. ; Parr R. G. ; Levy M. ; Balduz J. L. , Jr. Phys. Rev. Lett. 1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691
[10]
26 Ayers P. W. J. Math. Chem. 2008, 43, 285. doi: 10.1007/s10910-006-9195-5
[11]
41 Kutzelnigg W. ; Koch S. J. Chem. Phys. 1983, 79 (9), 4315. doi: 10.1063/1.446313
[12]
47 Eschrig H. Phys. Rev. B 2010, 82, 205120. doi: 10.1103/PhysRevB.82.205120
[13]
49 Malek A. ; Balawender R. J. Chem. Phys. 2015, 142, 054104. doi: 10.1063/1.4906555
[14]
50 Franco-Perez M. ; Ayers P. W. ; Gazquez J. L. Theor. Chem. Acc. 2016, 135 (8), 199. doi: 10.1007/s00214-016-1961-2
[15]
54 Bochicchio R. C. ; Miranda-Quintana R. A. ; Rial D. J. Chem. Phys. 2013, 139 (19), 191101. doi: 10.1063/1.4832495
[16]
55 Franco-Perez M. ; Heidar-Zadeh F. ; Ayers P. W. ; Gazquez J. L. ; Vela A. Phys. Chem. Chem. Phys. 2017, 19 (18), 11588. doi: 10.1039/c7cp00224f
[17]
58 Ayers P. W. ; Levy M. Theor. Chem. Acc. 2000, 103, 353. doi: 10.1007/s002149900093
[18]
5 Levy M. Proc. Natl. Acad. Sci. USA 1979, 76, 6062. doi: 10.1073/pnas.76.12.6062
[19]
10 Levy M. In On Time-Independent Density-Functional Theories for Excited States, Proceedings of the 1st International Workshop Electron Correlation and Material Properties 1999, 299- 308.
[20]
11 Levy M. ; Nagy A. Phys. Rev. Lett. 1999, 83, 4361. doi: 10.1103/PhysRevLett.83.4361
[21]
13 Nagy A. ; Levy M. Phys. Rev. A 2001, 63, 052502. doi: 10.1103/PhysRevA.63.052502
[22]
24 Zhang Y. K. ; Yang W. T. Theor. Chem. Acc. 2000, 103, 346. doi: 10.1007/s002149900021
[23]
25 Yang W. T. ; Zhang Y. K. ; Ayers P. W. Phys. Rev. Lett. 2000, 84, 5172. doi: 10.1103/PhysRevLett.84.5172
[24]
27 Liu S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332
[25]
28 Ayers P. W. ; Anderson J. S. M. ; Bartolotti L. J. Int. J. Quantum Chem. 2005, 101, 520. doi: 10.1002/qua.20307
[26]
29 Johnson P. A. ; Bartolotti L. J. ; Ayers P. W. ; Fievez T. ; Geerlings P. Charge Density and Chemical Reactivity: A Unified View from Conceptual DFT. In Modern Charge Density Analysis; Gatti, C., Macchi, P. Eds. Springer: New York, NY, USA, 2012, 715- 764.
[27]
30 De Proft F. ; Geerlings P. ; Ayers P. W. The conceptual Density Functional Theory Perspective of Bonding. In The Chemical Bond: Fundamental Aspects of Chemical Bonding; Shaik, S., Frenking, G., Eds. Wiley: Darmstadt, Germany, 2014, 1, 233- 270.
[28]
31 Gazquez J. L. J. Mex. Chem. Soc. 2008, 52, 3.
[29]
51 Franco-Perez M. ; Ayers P. W. ; Gazquez J. L. ; Vela A. J. Chem. Phys. 2015, 143 (24), 244117. doi: 10.1063/1.4938422
[30]
52 Franco-Perez M. ; Gazquez J. L. ; Ayers P. W. ; Vela A. J. Chem. Phys. 2015, 143 (15), 154103. doi: 10.1063/1.4932539
[31]
53 Miranda-Quintana R. A. ; Ayers P. W. J. Chem. Phys. 2016, 144 (24), 244112. doi: 10.1063/1.4953557
[32]
56 Gyftopoulos E. P. ; Hatsopoulos G. N. Proc. Natl. Acad. Sci. USA 1965, 60, 786.
[33]
57 Ayers P. W. ; Yang W. Density Functional Theory. In Computational Medicinal Chemistry for Drug Discovery; Bultinck, P., de Winter, H., Langenaeker, W., Tollenaere, J. P. Eds. Dekker: New York, NY, USA, 2003, 571- 616.
[34]
59 Valone S. M. J. Chem. Phys. 1980, 73, 4653. doi: 10.1063/1.440656
[35]
1 Hohenberg P. ; Kohn W. Phys. Rev. 1964, 136, B864. doi: 10.1103/PhysRev.136.B864
[36]
3 Kohn W. ; Becke A. D. ; Parr R. G. J. Phys. Chem. 1996, 100, 12974. doi: 10.1021/jp960669l
8 Gorling A. Phys. Rev. A 1996, 54, 3912. doi: 10.1103/PhysRevA.54.3912
[39]
9 Gorling A. Phys. Rev. A 1999, 59, 3359. doi: 10.1103/PhysRevA.59.3359
[40]
16 Ayers P. W. ; Nagy A. ; Levy M. Phys. Rev. A 2012, 85, 042518. doi: 10.1103/PhysRevA.85.042518
[41]
17 Ayers P. W. ; Levy M. ; Nagy A. J. Chem. Phys. 2015, 143 (19), 4. doi: 10.1063/1.4934963
[42]
18 Evangelista F. A. ; Shushkov P. ; Tully J. C. J. Phys. Chem. A 2013, 117 (32), 7378. doi: 10.1021/jp401323d
[43]
19 Glushkov V. N. ; Assfeld X. J. Chem. Phys. 2010, 132, 204106. doi: 10.1063/1.3443777
[44]
21 Miranda-Quintana R. A. ; Gonzalez M. M. Int. J. Quantum Chem. 2013, 113 (22), 2478. doi: 10.1002/qua.24486
[45]
32 Geerlings P. ; De Proft F. ; Langenaeker W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p
[46]
33 Heidar-Zadeh F. ; Miranda-Quintana R. A. ; Verstraelen T. ; Bultinck P. ; Ayers P. W. J. Chem. Theory Comp. 2016, 12 (12), 5777. doi: 10.1021/acs.jctc.6b00494
[47]
34 Heidar-Zadeh F. ; Richer M. ; Fias S. ; Miranda-Quintana R. A. ; Chan M. ; Franco-Perez M. ; Gonzalez-Espinoza C. E. ; Kim T. D. ; Lanssens C. ; Patel A. H. G., et al. Chem. Phys. Lett. 2016, 660, 307. doi: 10.1016/j.cplett.2016.07.039
[48]
35 Liu S. B. ; Schauer C. K. ; Pedersen L. G. J. Chem. Phys. 2009, 131, 164107. doi: 10.1063/1.3251124
[49]
36 Ayers P. W. ; Parr R. G. ; Pearson R. G. J. Chem. Phys. 2006, 124, 194107. doi: 10.1063/1.2196882
[50]
37 Chattaraj P. K. ; Ayers P. W. ; Melin J. Phys. Chem. Chem. Phys. 2007, 9, 3853. doi: 10.1039/b705742c
[51]
38 Ayers P. W. Faraday Discuss. 2007, 135, 161. doi: 10.1039/b606877d
[52]
39 Chattaraj P. K. ; Ayers P. W. J. Chem. Phys. 2005, 123, 086101. doi: 10.1063/1.2011395
[53]
40 Kutzelnigg W. J. Chem. Phys. 1985, 82 (9), 4166. doi: 10.1063/1.448859
[54]
42 Kutzelnigg W. J. Chem. Phys. 1982, 77 (6), 3081. doi: 10.1063/1.444231
[55]
43 Kutzelnigg W. Quantum chemistry In Fock Space. In Aspects of Many-Body Effects in Molecules and Extended Systems; Mukherjee, D., Ed., Springer-Verlag: Berlin, Germany, 1989, 35- 68.
[56]
44 Kutzelnigg W. J. Chem. Phys. 1984, 80 (2), 822. doi: 10.1063/1.446736
[57]
45 Stone M. H. Linear Transformations in Hilbert Space American Mathematical Society: New York, NY, USA, 1932, 15
[58]
46 Eschrig H. The Fundamentals of Density Functional Theory Eagle: Leipzig, Germany, 2003.
[59]
48 Malek A. M. ; Balawender R. arXiv:1310.6918 2013.