通过调控Cu负载量及Cu/Mn原子比,探究其对TiO2负载Cu-Mn复合氧化物(CuxMny/TiO2)催化材料中活性组分间相互作用的影响,结果表明,铜负载量为15% (w,质量分数)和Cu/Mn原子比为1 : 1时有利于类铜锰尖晶石相Cu1.5Mn1.5O4的形成,随着Cu负载量的增加促使氧物种从晶格氧向表面吸附氧转移。复合催化材料中铜负载量的变化及Cu/Mn原子比对活性组分和催化活性间的相互作用影响显著。结果发现Cu15Mn15/TiO2在225 ℃时使正己醛转化率达到90% (T90),材料良好的性能归因于其具有较高的Cu2+与Oads含量,并可与Mn2+实现双还原氧化过程。结果表明,Cu15Mn15/TiO2复合材料中的类铜锰尖晶石活性组分可完成redox循环,以保持催化材料较高的稳定性。 In this study, we regulated copper loading and the atomic ratio of Cu/Mn and investigated the influence on interaction of the active species of Cu-Mn composite oxide catalyst supported on TiO2 (CuxMny/ TiO2). The results indicate that 15% (w, mass fraction) copper loading and a 1 : 1 atomic ratio of Cu/Mn favors formation of analogous Cu-Mn spinel (Cu1.5Mn1.5O4). With increasing loading of copper, oxygen transfers from the lattice oxygen species to defect oxygen. The changes in copper loading and the Cu/Mn atomic ratio have a large influence on the interaction between the active components and the catalytic activity. We found that 90% n-hexanal can be degraded by Cu15Mn15/TiO2 at 225 ℃ (T90). The excellent performance of Cu15Mn15/TiO2 is attributed to the higher contents of Cu2+ and Oads, which can achieve a dual redox process with Mn2+ in Cu15Mn15/TiO2. The analogous Cu-Mn spinel active ingredient can maintain high catalytic stability by redox cycles
References
[1]
2 Li P. ; Tong Z. Q. ; Huang Y Acta Sci. Circum 2008, 28 (3), 468. doi: 10.3321/j.issn:0253-2468.2008.03.010
[2]
8 Shu J. ; Wu S. L. ; Wang R. Chin. J. Catal 1989, 10 (3), 244.
[3]
束骏; 吴善良; 汪仁. 催化学报, 1989, 10 (3), 244.
[4]
9 Morales R. M. ; Barbero P. B. ; Cadús E. C Fuel 2008, 87 (7), 1177. doi: 10.1016/j.fuel.2007.07.015
[5]
10 Li W. ; Huang L. L. ; Qu Y. C. ; Ning X. Y. ; Zou K. H Petrochem. Technol 2014, 43 (11), 1319. doi: 10.3969/j.issn.1000-8144.2014.11.015
29 Wang D. ; Zhang L. ; Li J. H. ; Kamasamudram K. ; Epling W S. Catal. Today 2014, 231, 64. doi: 10.1016/j.cattod.2013.11.040
[17]
晏耀宗; 郭谨玮陈亚中. 分子催化, 2015, 29 (1), 82.
[18]
32 Li, D. Studies on the Characterization and the Properties ofCuO-MnxOy/γ-Al2O3 Catalyst for NO Catalytic Reduction. Ph. D.Dissertation, Nanjing University, Nanjing, 2011.
[19]
24 Lu H. F. ; Kong X. X. ; Huang H. F. ; Zhou Y. ; Chen Y. F J. Environ. Sci 2015, 32, 102. doi: 10.1016/j.jes.2014.11.015
[20]
25 Guo J. L. ; Jia M. L. ; Zhaori G. T. ; Shen Y. N Acta Chim. Sin 2011, 69, 555.
[21]
王幸宜; 卢冠忠; 汪仁; 吴善良. 催化学报, 1994, 15 (2), 103.
[22]
30 Hosseini S. A. ; Niaei A. ; Salari D. ; Alvarez-Galvanc M. C. ; Fierro J. L. G Ceram. Int 2014, 40 (4), 6157. doi: 10.1016/j.ceramint.2013.11.068
[23]
31 Yan Y. Z. ; Guo J.W. ; Chen Y. Z. J Mol. Catal 2015, 29 (1), 82.
26 Xu, M. Y. Preparation and Catalytic Performance for TolueneCombustion of CuMn2CenOx/Cord Cell-type Catalysts. M. S.Dissertation, South China University of Technology, Guangzhou, 2011.