全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201605032

Full-Text   Cite this paper   Add to My Lib

Abstract:

制备了一种空心碳球负载二硫化硒(SeS2@HCS)复合材料作为锂离子电池正极材料。通过扫描电子显微镜(SEM),X射线衍射(XRD)以及氮气吸脱附测试(BET)等对产物形貌、组成和结构进行了表征。实验结果显示,采用模板法结合化学聚合法可以合成形貌均一、单分散的空心碳球;其直径约为500 nm,壁厚约为30 nm。进一步采用熔融灌入法可以得到空心碳球负载二硫化硒复合材料。将所制备复合材料组装成电池进行电化学性能测试,与原始二硫化硒块体材料相比,SeS2@HCS复合材料具有更高的初始容量(100 mA·g-1电流密度下,初始放电容量为956 mAh·g-1)和更长的循环寿命(100 mA·g-1电流密度下,循环200圈),同时显示出更优异的倍率性能。研究结果表明该复合材料是一种具有应用前景的新型锂离子电池正极材料。
A selenium disulfide-impregnated hollow carbon sphere composite was prepared as the cathode material for lithium-ion batteries. The morphology, composition, and structure of the as-synthesized composite were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and the Brunauer-Emmett- Teller (BET) technique. It was found that uniform monodispersive hollow carbon spheres can be synthesized by the template method combined with chemical polymerization. The diameter of the spheres is about 500 nm and the thickness of their wall is about 30 nm. Furthermore, a selenium disulfide-impregnated hollow carbon sphere composite can be achieved by the melting-diffusion method. The electrochemical performance of the as-synthesized composite as a cathode material for lithium-ion batteries was also investigated. Compared with the pristine bulk SeS2 material, the SeS2@HCS composite exhibits higher initial discharge capacity (956 mAh· g-1 at a current density of 100 mA·g-1), longer cycle life (200 cycles at a current density of 100 mA·g-1), and better rate performance. The results indicate that this composite can be considered as a promising candidate for the cathode material of lithium-ion batteries

References

[1]  1 Bruce P. G. Solid State Ionics 2008, 179, 752. doi: 10.1016/j.ssi.2008.01.095
[2]  2 Mai L. ; Tian X. ; Xu X. ; Chang L. ; Xu L. Chem. Rev. 2014, 114, 11828. doi: 10.1021/cr500177a
[3]  3 Kang B. ; Ceder G. Nature 2009, 458, 190. doi: 10.1038/nature07853
[4]  4 Mai L. Q. ; Yang S. ; Han C. H. ; Xu L. ; Xu X. ; Pi Y. Q. Acta Phys. -Chim. Sin. 2011, 27, 1551. doi: 10.3866/PKU.WHXB20110710
[5]  麦立强; 杨霜; 韩春华; 徐林; 许絮; 皮玉强. 物理化学学报, 2011, 27, 1551. doi: 10.3866/PKU.WHXB20110710
[6]  5 Yang Y. ; Zheng G. ; Cui Y. Chem. Soc. Rev. 2013, 42, 3018. doi: 10.1039/C2CS35256G
[7]  6 Yao Z. D. ; Wei W. ; Wang J. L. ; Yang J. ; Nuli Y. N. Acta Phys. -Chim. Sin. 2011, 27, 1005. doi: 10.3866/PKU.WHXB20110345
[8]  7 Kim J. ; Lee D. J. ; Jung H. G. ; Sun Y. K. ; Hassoun J. ; Scrosati B. Adv. Funct. Mater. 2013, 23, 1076. doi: 10.1002/adfm.201200689
[9]  李庆洲; 李玉惠; 李亚娟; 刘又年. 物理化学学报, 2014, 30, 1474. doi: 10.3866/PKU.WHXB201406041
[10]  9 Ji X. ; Lee K. T. ; Nazar L. F. Nat. Mater. 2009, 8, 500. doi: 10.1038/NMAT2460
[11]  10 Yang C. P. ; Xin S. ; Yin Y. X. ; Ye H. ; Zhang J. ; Guo Y. Angew. Chem. Int. Edit. 2013, 52, 8363. doi: 10.1002/anie.201303147
[12]  11 Abouimrane A. ; Dambournet D. ; Chapman K.W. ; Chupas P.J. ; Weng W. ; Amine K. J. Am. Chem. Soc. 2012, 134, 4505. doi: 10.1021/ja211766q
[13]  12 Cui Y. ; Abouimrane A. ; Lu J. ; Bolin T. ; Ren Y. ; Weng W. ; Sun C. ; Maroni V. A. ; Heald S. M. ; Amine K. J. Am. Chem. Soc. 2013, 135, 8047. doi: 10.1021/ja402597g
[14]  13 Luo C. ; Zhu Y. ; Wen Y. ; Wang J. ; Wang C. Adv. Funct. Mater. 2014, 24, 4082. doi: 10.1002/adfm.201303909
[15]  14 Li X. ; Liang J. ; Zhang K. ; Hou Z. ; Zhang W. ; Zhu Y. ; Qian Y. Energy Environ. Sci. 2015, 8, 3181. doi: 10.1039/c5ee01470k
[16]  15 Zhang C. ; Wu H. B. ; Yuan C. ; Guo Z. ; Lou X. Angew. Chem. Int. Edit. 2012, 124, 9730. doi: 10.1002/ange.201205292
[17]  16 Jayaprakash N. ; Shen J. ; Moganty S. S. ; Corona A. ; Archer L. A. Angew. Chem. Int. Edit. 2011, 123, 6026. doi: 10.1002/ange.201100637
[18]  17 Zhang J. ; Fan L. ; Zhu Y. ; Xu Y. ; Liang J. ; Wei D. ; Qian Y. Nanoscale 2014, 6, 12952. doi: 10.1039/C4NR03705G
[19]  18 Qu Y. ; Zhang Z. ; Jiang S. ; Wang X. ; Lai Y. ; Liu Y. ; Li J. J. Mater. Chem. A 2014, 2, 12255. doi: 10.1039/C4TA02563F
[20]  19 Li D. ; Han F. ; Wang S. ; Cheng F. ; Sun Q. ; Li W. C. ACS Appl. Mater. Interfaces 2013, 5, 2208. doi: 10.1021/am4000535
[21]  20 Wang H. ; Yang Y. ; Liang Y. ; Robinson J. T. ; Li Y. ; Jackson A. ; Cui Y. ; Dai H. Nano Lett. 2011, 11, 2644. doi: 10.1021/nl200658a
[22]  21 Lu S. ; Cheng Y. ; Wu X. ; Liu J. Nano Lett. 2013, 13, 2485. doi: 10.1021/nl400543y
[23]  22 Li W. ; Chen D. ; Li Z. ; Shi Y. ; Wan Y. ; Wang G. ; Jiang Z. ; Zhao D. Carbon 2007, 45, 1757. doi: 10.1016/j.carbon.2007.05.004
[24]  26 Li Z. ; Jiang Y. ; Yuan L. ; Yi Z. ; Wu C. ; Liu Y. ; Strasser P. ; Huang Y. ACS Nano 2014, 8, 9295. doi: 10.1021/nn503220h
[25]  28 Luo W. ; Zhang P. ; Wang X. ; Li Q. ; Dong Y. ; Hua J. ; Zhou L. ; Mai L. J. Power Sources 2016, 304, 340. doi: 10.1016/j.jpowsour.2015.11.047
[26]  29 Zhang Z. ; Jiang S. ; Lai Y. ; Li J. ; Song J. ; Li J. J. Power Sources 2015, 284, 95. doi: 10.1016/j.jpowsour.2015.03.019
[27]  姚真东; 魏巍; 王久林; 杨军; 努丽燕娜. 物理化学学报, 2011, 27, 1005. doi: 10.3866/PKU.WHXB20110345
[28]  8 Li Q. Z. ; Li Y. H. ; Li Y. J. ; Liu Y. N. Acta Phys. -Chim. Sin. 2014, 30, 1474. doi: 10.3866/PKU.WHXB201406041
[29]  23 Lee J. ; Kim J. ; Hyeon T. Adv. Mater. 2006, 18, 2073. doi: 10.1002/adma.200501576
[30]  24 Luo C. ; Xu Y. ; Zhu Y. ; Liu Y. ; Zheng S. ; Liu Y. ; Langrock A. ; Wang C. ACS Nano 2013, 7, 8003. doi: 10.1021/nn403108w
[31]  25 Li Z. ; Yuan L. ; Yi Z. ; Liu Y. ; Huang Y. Nano Energy 2014, 9, 229. doi: 10.1016/j.nanoen.2014.07.012
[32]  27 Zhang Z. ; Li Z. ; Hao F. ; Wang X. ; Li Q. ; Qi Y. ; Fan R. ; Yin L. Adv. Funct. Mater. 2014, 24, 2500. doi: 10.1002/adfm.201303080

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133