全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 


DOI: 10.3866/PKU.WHXB201710251

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work it is shown that the kinetic energy and the exchange-correlation energy are mutual dependent on each other. This aspect is first derived in an orbital-free context. It is shown that the total Fermi potential depends on the density only, the individual parts, the Pauli kinetic energy and the exchange-correlation energy, however, are orbital dependent and as such mutually influence each other. The numerical investigation is performed for the orbital-based non-interacting Kohn-Sham system in order to avoid additional effects due to further approximations of the kinetic energy. The numerical influence of the exchange-correlation functional on the non-interacting kinetic energy is shown to be of the order of a few Hartrees. For chemical purposes, however, the energetic performance as a function of the nuclear coordinates is much more important than total energies. Therefore, the effect on the bond dissociation curve was studied exemplarily for the carbon monoxide. The data reveals that, the mutual influence between the exchange-correlation functional and the kinetic energy has a significant influence on bond dissociation energies and bond distances. Therefore, the effect of the exchange-correlation treatment must be considered in the design of orbital-free density functional approximations for the kinetic energy.
In this work it is shown that the kinetic energy and the exchange-correlation energy are mutual dependent on each other. This aspect is first derived in an orbital-free context. It is shown that the total Fermi potential depends on the density only, the individual parts, the Pauli kinetic energy and the exchange-correlation energy, however, are orbital dependent and as such mutually influence each other. The numerical investigation is performed for the orbital-based non-interacting Kohn-Sham system in order to avoid additional effects due to further approximations of the kinetic energy. The numerical influence of the exchange-correlation functional on the non-interacting kinetic energy is shown to be of the order of a few Hartrees. For chemical purposes, however, the energetic performance as a function of the nuclear coordinates is much more important than total energies. Therefore, the effect on the bond dissociation curve was studied exemplarily for the carbon monoxide. The data reveals that, the mutual influence between the exchange-correlation functional and the kinetic energy has a significant influence on bond dissociation energies and bond distances. Therefore, the effect of the exchange-correlation treatment must be

References

[1]  42 Nagy A. Int. J. Quantum Chem. 2010, 110, 2117. doi: 10.1002/qua.22497
[2]  45 Finzel K. J. Chem. Phys. 2016, 144, 034108. doi: 10.1063/1.4940035
[3]  1 Ho G. S. ; Lignères V. L. ; Carter E. A. Comput. Phys. Comm. 2008, 179, 839. doi: 10.1016/j.cpc.2008.07.002
[4]  2 Karasiev V. ; Sjostrom T. ; Trickey S. B. Computer Phys. Commun. 2014, 185, 3240. doi: 10.1016/j.cpc.2014.08.023
[5]  3 Lehtom?ki J. ; Makkonen I. ; Caro M. A. ; Harju A. ; Lopez-Acevedo O. J. Chem. Phys. 2014, 141, 234102. doi: 10.1063/1.4903450
[6]  11 Kryachko E. S. ; Lude?a E. V. Phys. Rep. 2014, 544, 123. doi: 10.1016/j.physrep.2014.06.002
[7]  19 Lee D. ; Constantin L. A. ; Perdew J. P. ; Burke K. J. Chem. Phys. 2009, 130, 034107. doi: 10.1063/1.3059783
[8]  23 Ghiringhelli L. M. ; Hamilton I. P. ; Delle Site L. J. Chem. Phys. 2010, 132, 014106. doi: 10.1063/1.3280953
[9]  24 Trickey S. ; Karasiev V. V. ; Vela A. Phys. Rev. B 2011, 84, 075146. doi: 10.1103/PhysRevB.84.075146
[10]  25 Wang Y. A. ; Carter E. A. Theoretical Methods in Condensed Phase Chemistry; Schwarz, S. D. Ed. Kluwer: New York, NY, USA, 2000, 117- 184.
[11]  28 Bartell L. S. ; Brockway L. O. Phys. Rev. 1953, 90, 833. doi: 10.1103/PhysRev.90.833
[12]  29 Waber J. T. ; Cromer D. T. J. Chem. Phys. 1965, 42, 4116. doi: 10.1063/1.1695904
[13]  30 Weinstein H. ; Politzer P. ; Srebrenik S. Theor. Chim. Acta 1975, 38, 159. doi: 10.1007/BF00581473
[14]  35 Levy M. ; Ou-Yang H. Phys. Rev. A 1988, 38, 625. doi: 10.1103/PhysRevA.38.625
[15]  36 Nagy A. Acta Phys. Hung. 1991, 70, 321. doi: 10.1007/BF03054145
[16]  43 Nagy A. J. Chem. Phys. 2011, 135, 044106. doi: 10.1063/1.3607313
[17]  46 Finzel K. Theor. Chem. Acc. 2016, 135, 87. doi: 10.1007/s00214-016-1850-8
[18]  52 Levy M. ; Perdew J. P. Phys. Rev. A 1985, 32, 2010. doi: 10.1103/PhysRevA.32.2010
[19]  54 Ryabinkin I. G. ; Kananenka A. A. ; Staroverov V. N. Phys. Rev. Lett. 2013, 111, 074112. doi: 10.1103/PhysRevLett.111.013001
[20]  56 Slater J. C. Phys. Rev. 1951, 81, 385. doi: 10.1103/PhysRev.81.385
[21]  57 G?rling A. Phys. Rev. A 1992, 46, 3753. doi: 10.1103/PhysRevA.46.3753
[22]  61 Slater J. C. Phys. Rev. 1969, 179, 28. doi: 10.1103/PhysRev.179.28
[23]  62 Perdew J. P. ; Chevary J. A. ; Vosko S. H. ; Jackson K. A. ; Pederson M. R. ; Singh D. J. ; Fiolhais C. Phys. Rev. B 1992, 46, 6671. doi: 10.1103/PhysRevB.46.6671
[24]  65 Van Voorhis T. ; Scuseria G. E. J. Chem. Phys. 1998, 109, 400. doi: 10.1063/1.476577
[25]  67 Becke A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
[26]  5 Thomas L. H. Proc. Cambridge Philos. Soc. 1927, 23, 542. doi: 10.1017/S0305004100011683
[27]  10 Lude?a E. V. ; Illas F. ; Ramirez-Solis A. Int. J. Mod. Phys. B 2008, 22, 4642. doi: 10.1142/S0217979208050395
[28]  18 Tran F. ; Wesolowski T. A. Int. J. Quantum Chem. 2002, 89, 441. doi: 10.1002/qua.10306
[29]  20 Karasiev V. ; Chakraborty D. ; Trickey S. B. Many-Electron Approaches in Physics, Chemistry and Mathematic; Delle Site, L., Bach V. Eds. Springer Verlag: Heidelberg, Germany, 2014, 113- 134.
[30]  21 Karasiev V. ; Trickey S. B. Adv. Quantum Chem. 2015, 71, 221. doi: 10.1016/bs.aiq.2015.02.004
[31]  22 Ghiringhelli L. M. ; Delle Site L. Phys. Rev. B 2008, 77, 073104. doi: 10.1103/PhysRevB.77.073104
[32]  26 Shin I. ; Carter E. A. J. Chem. Phys. 2014, 140, 18A. doi: 10.1063/1.4869867
[33]  27 Ayers P. W. ; Lucks J. B. ; Parr R. G. Acta Chimica et Physica Debrecina 2002, 34, 223.
[34]  31 Schmider H. ; Sagar R. ; Smith V. H. , Jr. Can. J. Chem. 1992, 70, 506. doi: 10.1139/v92-072
[35]  32 Yang W. Phys. Rev. A 1986, 34, 4575. doi: 10.1103/PhysRevA.34.4575
[36]  41 Nagy A. Chem. Phys. Lett. 2008, 460, 343. doi: 10.1016/j.cplett.2008.05.077
[37]  58 G?rling A. ; Ernzerhof M. Phys. Rev. A 1995, 51, 4501. doi: 10.1103/PhysRevA.51.4501
[38]  60 Woon D. E. ; Dunning T. H. J. J. Chem. Phys. 1993, 98, 1358. doi: 10.1063/1.464303
[39]  4 Ghosh S. ; Suryanarayana P. J. Comput. Phys. 2016, 307, 634. doi: 10.1016/j.jcp.2015.12.027
[40]  6 Fermi E. Zeitschrift für Physik 1928, 48, 73. doi: 10.1007/BF01351576
[41]  7 Hohenberg P. ; Kohn W. Phys. Rev. B 1964, 136, 864. doi: 10.1103/PhysRev.136.B864
[42]  8 Kohn W. ; Sham L. J. Phys. Rev. A 1965, 140, 1133. doi: 10.1103/PhysRev.140.A1133
[43]  9 Ayers P. W. ; Liu S. Phys. Rev. A 2007, 75, 022514. doi: 10.1103/PhysRevA.75.022514
[44]  12 von Weizs?cker C. F. Z. Phys. 1935, 96, 431. doi: 10.1007/BF01337700
[45]  13 Kirzhnits D. A. Sov. Phys. JETP 1957, 5, 64.
[46]  14 Hodges C. H. Can. J. Phys. 1973, 51, 1428. doi: 10.1139/p73-189
[47]  15 Murphy D. R. Phys. Rev. A 1981, 24, 1682. doi: 10.1103/PhysRevA.24.1682
[48]  16 Lee H. ; Lee C. ; Parr R. G. Phys. Rev. A 1991, 44, 768. doi: 10.1103/PhysRevA.44.768
[49]  17 Fuentealba P. ; Reyes O. Chem. Phys. Lett. 1995, 232, 31. doi: 10.1016/0009-2614(94)01321-L
[50]  33 Dreizler R. M. ; Gross E. K. U. Density Functional Theory Springer Verlang: Berlin Heidelberg, Germany, 1990.
[51]  34 March N. H. Phys. Lett. A 1986, 113, 476. doi: 10.1016/0375-9601(86)90123-4
[52]  37 Nagy A. ; March N. H. Int. J. Quantum Chem. 1991, 39, 615. doi: 10.1002/qua.560390408
[53]  38 Nagy A. ; March N. H. Phys. Chem. Liq. 1992, 25, 37. doi: 10.1080/00319109208027285
[54]  39 Holas A. ; March N. H. Int. J. Quantum Chem. 1995, 56, 371. doi: 10.1002/qua.560560423
[55]  40 Amovilli C. ; March N. H. Int. J. Quantum Chem. 1998, 66, 281. doi: 10.1002/(SICI)1097-461X(1998)66:4<281::AID-QUA3>3.0.CO;2-R
[56]  44 Finzel K. Int. J. Quantum Chem. 2015, 115, 1629. doi: 10.1002/qua.24986
[57]  47 Finzel K. Int. J. Quantum Chem. 2016, 116, 1261. doi: 10.1002/qua.25169
[58]  48 Finzel K. ; Ayers P. W. Theor. Chem. Acc. 2016, 135, 255. doi: 10.1007/s00214-016-2013-7
[59]  49 Finzel K. ; Ayers P. W. Int. J. Quantum Chem. 2017, 117, E25364. doi: 10.1002/qua.25364
[60]  50 Finzel K. ; Baranov A. I. Int. J. Quantum Chem. 2016, 117, 40. doi: 10.1002/qua.25312
[61]  51 Parr R. G. ; Yang W. Density-Functional Theory of Atoms and Molecules Oxford University Press: New York, NY, USA, 1989.
[62]  53 Bartolotti L. J. ; Acharya P. K. J. Chem. Phys. 1982, 77, 4576. doi: 10.1063/1.444409
[63]  55 Kohut S. V. ; Ryabinkin I. G. ; Staroverov V. N. J. Chem Phys. 2014, 140, 18A. doi: 10.1063/1.4871500
[64]  59 Frisch M. J. ; Trucks G. W. ; Schlegel H. B. ; Scuseria G. E. ; Robb M. A. ; Cheeseman J. R. ; Montgomery J. A. Jr. ; Vreven T. ; Kudin K. N. ; Burant J. C. ; et al Gaussian 16, Revision A.03 Gaussian, Inc.: Wallingford, CT, USA, 2016.
[65]  63 Perdew J. P. ; Burke K. ; Wang Y. Phys. Rev. B 1996, 54, 16533. doi: 10.1103/PhysRevB.54.16533
[66]  64 Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
[67]  66 Perdew J. P. ; Ruzsinszky A. ; Gábor I. ; Constantin A. L. ; Sun J. Phys. Rev. Lett. 2009, 103, 026403. doi: 10.1103/PhysRevLett.103.026403

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133