设计合成了单氰基功能化的2, 5-二叔丁基-1-(β-氰基乙氧基)-4-甲氧基苯(RS-MCN)和双氰基功能化的2, 5-二叔丁基-1, 4-(β-氰基乙氧基)苯(RS-DCN),并用作氧化还原过充添加剂开展了其在锂离子电子中的应用研究。通过丙烯氰和2, 5-二叔丁基对苯二酚的迈克尔加成反应可高效合成RS-MCN和RS-DCN,氰乙基取代后的过充保护添加剂分子的可逆氧化还原电位分别为4.02、4.08 V(vs Li/Li+);并且单氰基取代的RS-MCN在商业碳酸酯电解液1 mol·L-1 LiPF6/EC+DEC+EMC(1:1:1,体积比)中的溶解度可高达0.3 mol·L-1。RSMCN和RS-DCN对LiFePO4/Li电池的过充保护性能和电极相容性也进行了深入的研究,实验结果表明:RSMCN具有更好的过充保护性能和电极相容性,其5 V截止电压过充保护时间可超过1200 h,100%过充保护大于90周循环;0.3 mol·L-1 RS-MCN的添加能使100%过充的LiFePO4/Li电池在2.5C倍率条件下正常循环,其放电比容量达153.5 mAh·g-1。此外,RS-MCN的添加对LiFePO4/Li电池在2.5-3.8 V条件下的循环性能有明显改善,添加有RS-MCN的电池在60周的循环后容量保持率高达94.4%,而商业电解液的电池在60周循环后的容量保持率降至84.3%。因此,氰基功能化RS-MCN是一类具有潜在应用前景的过充保护添加剂。 Nitrile-modified 2, 5-di-tert-butyl-hydroquinones were synthesized and investigated as redox shuttle overcharge additives for LiFePO4/Li cells. The cyanoethylation reaction was utilized to synthesize the target molecules 2, 5-di-tert-butyl-1, 4-di(β-cyanoethoxyl)benzene (RS-DCN) and 2, 5-di-tert-butyl-1-(β-cyanoethoxyl)-4-methoxybenzene (RS-MCN) in high efficiency from 2, 5-di-tert-butyl-hydroquinone and acrylonitrile. The solubility, cyclic voltammetric measurements, 5 V overcharge test, 100% overcharge test, high rate performance under 100% overcharge conditions, and cycle performance under normal conditions were studied in detail for the electrolyte with the addition of RS-DCN or RS-MCN. The RS-MCN compounds with the asymmetric structure delivered better solubility (with max. 0.3 mol·L-1 in 1.0 mol·L-1 LiPF6/EC+DEC+EMC, 1 : 1 : 1, in vol.), higher overcharge protection life (over 1200 h for the 5 V overcharge test), and excellent rate performance under 100% overcharge conditions (specific discharge capacity reached 153.5 mAh·g-1 at 2.5C). The addition of RS-MCN also improved the cycling performance of the LiFePO4/Li cell under the charge-discharge voltage range of 2.5-3.8 V
References
[1]
1 Etacheri V. ; Marom R. ; Elazari R. ; Salitra G. ; Aurbach D. Energy Environ. Sci 2011, 4, 3243. doi: 10.1039/C1EE01598B
[2]
2 Jacoby M. Chem. Eng. News 2007, 85 (51), 26.
[3]
8 Wang B. ; Xia Q. ; Zhang P. ; Li G. C. ; Wu Y. P. ; Luo H. J. ; Zhao S. Y. ; Ree T. Electrochem. Commun 2008, 10, 727. doi: 10.1016/j.elecom.2008.02.011
[4]
熊琳强; 张英杰; 董鹏; 杨瑞明; 夏书标. 化工进展, 2011, 30, 1198.
[5]
14 Feng J. K. ; Ai X. P. ; Cao Y. L. ; Yang H. X. Electrochem. Commun 2007, 9 (1), 25. doi: 10.1016/j.elecom.2006.08.033
[6]
17 Odom S. A. ; Ergun S. ; Poudel P. P. ; Parkin S. R. Energy Environ. Sci 2014, 7, 760. doi: 10.1039/C3EE42305K
[7]
19 Moshurchak L. M. ; Buhrmester C. ; Dahn J. R. J. Electrochem. Soc 2005, 152, A1279. doi: 10.1149/1.1896327
[8]
20 Huang J. ; Shkrob I. A. ; Wang P. ; Cheng L. ; Pan B. ; He M. ; Liao C. ; Zhang Z. ; Curtiss L. A. ; Zhang L. J. Mater. Chem. A 2015, 3, 7332. doi: 10.1039/c5ta00899a
[9]
22 Zhang Z. ; Zhang L. ; Schlueter J. A. ; Redfern P. C. ; Curtiss L. ; Amine K. J. Power Sources 2010, 195 (15), 4957. doi: 10.1016/j.jpowsour.2010.02.075
[10]
24 Zhang L. ; Zhang Z. ; Redfern P. C. ; Curtiss L. A. ; Amine K. Energy Environ. Sci 2012, 5, 8204. doi: 10.1039/c2ee21977h
[11]
25 Weng W. ; Zhang Z. ; Redfern P. C. ; Curtiss L. A. ; Amine K. J. Power Sources 2011, 196, 1530. doi: 10.1016/j.jpowsour.2010.08.049
[12]
29 Kim Y. S. ; Kim T. H. ; Lee H. ; Song H. K. Energy Environ. Sci 2011, 4 (10), 4038. doi: 10.1039/c1ee01272j
[13]
31 He J. R. ; Wang J. L. ; Zhong H. X. ; Ding J. N. ; Zhang L. Z. Electrochim. Acta 2015, 182, 900. doi: 10.1016/j.electacta.2015.10.006
[14]
32 Xie B. ; Mai Y. J. ; Wang J. L. ; Luo H. ; Yan X. D. ; Zhang L. Z. Ionics 2015, 21 (1), 909. doi: 10.1007/s11581-014-1272-3
[15]
5 Richardson T. J. ; Ross P. N. J. Electrochem. Soc 1996, 143 (12), 3992. doi: 10.1149/1.1837326
[16]
6 Adachi M. ; Tanaka K. ; Sekai K. J. Electrochem. Soc 1999, 146 (4), 1256. doi: 10.1149/1.1391755
9 Xiong L. Q. ; Zhang Y. J. ; Dong P. ; Yang R. M. ; Xia S. B. Chem. Ind. Eng. Prog 2011, 30, 1198.
[19]
12 Chen Z. ; Wang Q. ; Amine K. J. Electrochem. Soc 2006, 153 (12), A2215. doi: 10.1149/1.2352048
[20]
15 Abraham K. M. ; Pasquariello D. M. ; Willstaedt E. B. J. Electrochem. Soc 1990, 137, 1856. doi: 10.1149/1.2086817
[21]
16 Moshurchak L. M. ; Buhrmester C. ; Wang R. L. ; Dahn J. R. Electrochim. Acta 2007, 52, 3779. doi: 10.1016/j.electacta.2006.10.068
[22]
18 Ergun S. ; Elliott C. F. ; Kaur A. P. ; Parkin S. R. ; Odom S. A. Chem. Commun 2014, 50, 5339. doi: 10.1039/C3CC47503D
[23]
21 Buhrmester C. ; Chen J. ; Moshurchak L. ; Jiang J. ; Wang R.L. ; Dahn J. R. J. Electrochem. Soc 2005, 152 (12), A2390. doi: 10.1149/1.2098265
[24]
33 Khakani E. S. ; Forgie J. C. ; MacNeil D. D. ; Rochefort D. J. Electrochem. Soc 2015, 162 (8), A1432. doi: 10.1149/2.0131508jes
[25]
34 Kim Y. S. ; Lee H. C. ; Song H. K. ACS Appl. Mater. Interfaces 2014, 6, 8913. doi: 10.1021/am501671p
[26]
3 Chen Z. ; Qin Y. ; Amine K. Electrochim. Acta 2009, 54 (24), 5605. doi: 10.1016/j.electacta.2009.05.017
[27]
4 Chen L. ; Buhrmester C. ; Dahn J. R. Electrochem. Solid-State Lett 2005, 8, A59. doi: 10.1149/1.1836119
[28]
7 Guo Y. J. ; Chen H. ; Qi L. Acta Phys. -Chim. Sin 2007, 23 (supp.), 80. doi: 10.3866/PKU.WHXB2007Supp17
[29]
10 Buhrmester C. ; Moshurchak L. ; Wang R. L. ; Dahn J. R. J. Electrochem. Soc 2006, 153, A288. doi: 10.1149/1.2140615
[30]
11 Wang R. L. ; Buhrmester C. ; Dahn J. R. J. Electrochem. Soc 2006, 153, A445. doi: 10.1149/1.2140613
[31]
13 Wang R. L. ; Dahn J. R. J. Electrochem. Soc 2006, 153 (10), A1922. doi: 10.1149/1.2234563
[32]
23 Dahn J. R. ; Jiang J.W. ; Moshurchak L. M. ; Fleischauer M.D. ; Buhrmester C. ; Krause L. J. J. Electrochem. Soc 2005, 152 (6), A1283. doi: 10.1149/1.1906025
[33]
26 Ren C. Y. ; Lu H. ; Jia M. ; Zhang Z. A. ; Lai Y. Q. ; Li J. Acta Phys. -Chim. Sin 2012, 28 (9), 2091. doi: 10.3866/PKU.WHXB201206142
27 Huang J. ; Azimi N. ; Cheng L. ; Shkrob I. A. ; Xue Z. ; Wang J. ; Dietz Rago N. L. ; Curtiss L. A. ; Amine K. ; Zhang Z. ; Zhang L. J. Mater. Chem. A 2015, 3, 10710. doi: 10.1039/c5ta01326g
[36]
28 Moshurchak L. M. ; Lamanna W. M. ; Bulinski M. ; Wang R.L. ; Garsuch R. R. ; Jiang J. ; Magnuson D. ; Triemert M. ; Dahn J. R. J. Electrochem. Soc 2009, 156 (4), A309. doi: 10.1149/1.3077578
[37]
30 Zhong Y. L. ; Boruta D. T. ; Gauthier D.R., Jr. ; Askin D. Tetrahedron Lett 2011, 52, 4824. doi: 10.1016/j.tetlet.2011.07.018