以双氰胺、醋酸锌、钼酸铵、醋酸镉和硫化钠为原料,采用水热法合成了一系列Zn-Mo共掺杂CdS(Zn-Mo-CdS),并与g-C3N4组成异质结催化剂(Zn-Mo-CdS/g-C3N4)。采用X射线衍射光谱(XRD)、紫外-可见(UV-Vis)光谱、电感耦合等离子体-原子发射光谱(ICP-AES)、电化学阻抗谱(EIS)、X光电子能谱(XPS)等分析手段对制备的催化剂进行了表征。结果表明, Zn-Mo-CdS与g-C3N4之间紧密结合并形成异质结,促进界面电荷迁移,抑制光生电子-空穴对的复合。以可见光下降解染料罗丹明B (RhB)为探针反应考察了催化剂性能。结果表明, Zn-Mo-CdS/g-C3N4异质结催化剂的光催化性能与单纯g-C3N4、Zn-Mo-CdS及双金属硫化物/g-C3N4异质结催化剂相比均有大幅度提高,质量比m(Zn-Mo-CdS)/m(g-C3N4) = 4 : 1时制备的异质结催化剂表现出最大的降解速率常数,是单纯g-C3N4和Zn-Mo-CdS的30倍和10倍。不仅Zn-Mo-CdS,其他三元金属复合硫化物如Mo-Ni-CdS和Ni-Sn-CdS与g-C3N4之间也能有效构筑异质结,促进电子-空穴对的分离和催化性能提升。 A novel Zn-Mo-CdS/g-C3N4 heterojunction photocatalyst was prepared by hydrothermal posttreatment using dicyandiamide, zinc acetate, ammonium molybdate, cadmium acetate, and sodium sulfide as raw materials. X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), inductively coupled plasma atomic emission (ICP-AES), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The results indicate that heterojunctions are formed across the g-C3N4/Zn-Mo-CdS interface, which promotes interfacial charge transfer and inhibits the recombination of electrons and holes. The activities of as-prepared catalysts were tested through the photocatalytic degradation of Rhodamine B (RhB) under visible light. The results show that the Zn-Mo-CdS/g-C3N4 heterojunction photocatalyst clearly displayed increased activity compared with single g-C3N4 and Zn-Mo-CdS. At an optimal g-C3N4 mass fraction of 20%, the as-prepared heterojunction photocatalyst displayed the highest rate constant under visible light, which was 30 and 10 times of single g-C3N4 and Zn-Mo-CdS, respectively. Not only Zn-Mo-CdS, but also Mo-Ni-CdS and Ni-Sn-CdS can form heterojunctions with g-C3N4 to promote the rate of separation of electrons and holes and improve photocatalytic activity
References
[1]
1 Kondo K. ; Murakami N. ; Ye C. ; Tsubota T. ; Ohno T. Appl. Catal. B: Environ. 2013, 142.
[2]
2 Chen X. B. ; Shen S. H. ; Guo L. J. Chem. Rev. 2010, 110, 6503. doi: 10.1021/cr1001645
[3]
6 Niu P. ; Zhang L. ; Liu G. ; Cheng H. Adv. Funct. Mater. 2012, 22, 4763. doi: 10.1002/adfm.v22.22
[4]
7 Zhang Q. ; Wang H. Y. ; Hu S. Z. ; Lu G. ; Bai J. ; Kang X.X. ; Liu D. ; Gui J. Z. RSC Adv. 2015, 5, 42736. doi: 10.1039/C5RA04189A
[5]
8 Ong W. J. ; Tan L. L. ; Chai S. P. ; Yong S. T. Chem. Commun. 2015, 51, 858. doi: 10.1039/C4CC08996K
[6]
9 Ong W. J. ; Tan L. L. ; Chai S. P. ; Yong S. T. ; Mohamed A.R. Nano Energy 2015, 13, 757. doi: 10.1016/j.nanoen.2015.03.014
[7]
19 Xu Y. ; Schoonen M. A. A. Am. Mineral. 2000, 85, 543. doi: 10.2138/am-2000-0416
[8]
20 Ge L. ; Han C. ; Xiao X. Int. J. Hydrog. Energy 2013, 38, 6960. doi: 10.1016/j.ijhydene.2013.04.006
[9]
21 Sun M. ; Yan T. ; Y an ; Q; Liu H. Y. ; Yan L. G. ; Zhang Y. F. ; Du B. RSC Adv. 2014, 4, 19980. doi: 10.1039/c4ra01439a
[10]
36 Wang Y. ; Wang X. C. ; Antonietti M. Angew. Chem. Int. Edit. 2012, 51, 68. doi: 10.1002/anie.201101182
[11]
37 Ge L. ; Han C. Appl. Catal. B: Environ. 2012, 117- 118, 268..
[12]
44 Zhang J. ; Wang Y. J. ; Hu S. Z. Acta Phys. -Chim. Sin. 2015, 31, 159. doi: 10.3866/PKU.WHXB201411201
[13]
10 Tian N. ; Huang H.W. ; He Y. ; Guo Y. X. ; Zhang Y. H. RSC Adv. 2014, 4, 42716. doi: 10.1039/C4RA05917D
[14]
11 He Y. M. ; Zhang L. H. ; Wang X. X. ; Wu Y. ; Lin H. J. ; Zhao L. H. ; Weng W. Z. ; Wan H. L. ; Fan M. H. RSC Adv. 2014, 4, 13610. doi: 10.1039/c4ra00693c
[15]
12 Wang Y. J. ; Bai X. J. ; Pan C. S. ; He J. ; Zhu Y. F. J. Mater. Chem. 2012, 22, 11568. doi: 10.1039/c2jm16873a
[16]
16 Fan Y. H. ; Luo Q. ; Liu G. X. ; Wang J. X. ; Dong X. T. ; Yu W. S. ; Sun D. Chin. J. Inorg. Chem. 2014, 30, 627.
[17]
22 Sun M. ; Yan Q. ; Yan T. ; Li M. M. ; Wei D. ; Wang Z. P. ; Wei Q. ; Du B. RSC Adv. 2014, 4, 31019. doi: 10.1039/C4RA03843F
[18]
23 Xiang Q. ; Yu J. ; Jaroniec M. J. Am. Chem. Soc. 2012, 134, 6575. doi: 10.1021/ja302846n
[19]
24 Zong X. ; Yan H. J. ; Wu G. P. ; Ma G. J. ; Wen F. Y. ; Wang L. ; Li C. J. Am. Chem. Soc. 2008, 130, 7176. doi: 10.1021/ja8007825
[20]
25
[21]
26 Chen F. J. ; Cao Y. L. ; Jia D. Z. ; Liu A. J. Dyes Pigments 2015, 120, 8. doi: 10.1016/j.dyepig.2015.03.030
[22]
27 Chen F. J. ; Cao Y. L. ; Jia D. Z. Ceram. Int. 2015, 41, 6645. doi: 10.1016/j.ceramint.2015.01.111
[23]
31 Liu L. Y. ; Yang L. ; Pu Y. T. ; Xiao D. Q. ; Zhu J. G. Mater. Lett. 2012, 66, 121. doi: 10.1016/j.matlet.2011.08.025
[24]
32 Ge L. ; Han C. C. ; Liu J. Appl. Catal. B: Environ
[25]
33 Liu H. ; Jin Z. T. ; Xu Z. Z. Dalton Trans. 2015, 44, 14368. doi: 10.1039/C5DT01364J
[26]
38 Ma D. K. ; Zhou H. Y. ; Zhang J. H. ; Qian Y. T. Mater. Chem. Phys. 2008, 111, 391. doi: 10.1016/j.matchemphys.2008.04.035
[27]
39 Zhu Y. P. ; Li J. ; Ma T. Y. ; Liu Y. P. ; Du G. H. ; Yuan Z. Y.J. Mater. Chem. A 2014, 2, 1093. doi: 10.1039/C3TA13636A
[28]
40 Zhang K. ; Kim W. J. ; Ma M. ; Shi X. J. ; Park J. H. J. Mater. Chem. A 2015, 3, 4803. doi: 10.1039/C4TA05571C
[29]
42 Xu Y. ; Xu H. ; Wang L. ; Yan J. ; Li H. ; Song Y. ; Huang L. ; Cai G. Dalton Trans. 2013, 42, 7604. doi: 10.1039/c3dt32871f
[30]
43 He B. L. ; Dong B. ; Li H. L. Electrochem. Commun. 2007, 9, 425. doi: 10.1016/j.elecom.2006.10.008
[31]
3 Zhang G. G. ; Zhang M.W. ; Ye X. X. ; Qiu X. Q. ; Lin S. ; Wang X. C. Adv. Mater. 2014, 26, 805. doi: 10.1002/adma.201303611
[32]
4 Xu J. ; Wu H. T. ; Wang X. ; Xue B. ; Li Y. X. ; Cao Y. Phys. Chem. Chem. Phys. 2013, 15, 4510. doi: 10.1039/c3cp44402c
[33]
5 Ge L. Mater. Lett. 2011, 65, 2652. doi: 10.1016/j.matlet.2011.05.069
[34]
13 Hu J. S. ; Ren L. L. ; Guo Y. G. ; Liang H. P. ; Cao A. M. ; Wan L. J. ; Bai C. L. Angew. Chem. Int. Edit. 2012, 44, 1269.
[35]
14 Yan H. J. ; Yang J. H. ; Ma G. J. ; Wu G. P. ; Zong X. ; Lei Z.B. ; Shi J. Y. ; Li C. J. Catal. 2009, 266, 165. doi: 10.1016/j.jcat.2009.06.024
[36]
15 Huo Y. N. ; Yang X. L. ; Zhu J. ; Li H. X. Appl. Catal. B: Environ. 2011, 106, 69.
17 Nie Q. L. ; Yuan Q. L. ; Wang Q. S. ; Xu Z. D. J. Mater. Sci. 2004, 39, 5611. doi: 10.1023/B:JMSC.0000039301.70811.a4
[39]
18 Xia S. ; Lei W. ; Yang Y. L. Nanoscale Res. Lett. 2011, 6, 562. doi: 10.1186/1556-276X-6-562
[40]
28 Hu S. Z. ; Li F. Y. ; Fan Z. P. ; Wang F. ; Zhao Y. F. ; Lv Z. B. Dalton Trans. 2015, 44, 1084. doi: 10.1039/C4DT02658F
[41]
29 Wang D. S. ; Duan Y. D. ; Luo Q. Z. ; Li X. Y. ; Bao L. L. Desalination 2011, 270, 174. doi: 10.1016/j.desal.2010.11.042
[42]
30 Lu M. L. ; Pei Z. X. ; Weng S. X. ; Feng W. H. ; Fang Z. B. ; Zheng Z. Y. ; Huang M. L. ; Liu P. Phys. Chem. Chem. Phys. 2014, 16, 21280. doi: 10.1039/C4CP02846E
[43]
34 Dong F. ; Zhao Z.W. ; Xiong T. ; Ni Z. L. ; Zhang W. D. ; Sun Y. J. ; Ho W. K. ACS Appl. Mater. Interf. 2013, 5, 11392. doi: 10.1021/am403653a
[44]
35 Cao J. ; Luo B. D. ; Lin. H. L.; Xu B. Y. ; Chen S. F.J. Hazard. Mater. 2012, 217- 218,107.
[45]
41 Li Y. G. ; Wei X. L. ; Li H. J. ; Wang R. R. ; Feng J. ; Yun H. ; Zhou A. N. RSC Adv. 2015, 5, 14074. doi: 10.1039/C4RA14690E