兼具高通量和高选择性的气体分离膜是研究膜分离材料的目标.采用相转化法制备了聚酰亚胺非对称膜,并将其作为基底膜材料,分别在其表面修饰掺有金属有机框架材料Cu3(BTC)2 (1, 3, 5-均苯三甲酸合铜),沸石咪唑酯骨架材料ZIF-8以及镁铝水滑石MgAl-LDHs的聚酰胺酸溶液,经热亚胺化后制成非对称混合基质膜.研究了该系列非对称混合基质膜的结构特性和对CO2、CH4和N2气体分离性能;考察了ZIF-8的掺杂量对非对称混合基质膜透气性能的影响.结果表明非对称聚酰亚胺膜的表面修饰可有效地改变膜的表面性质,掺杂ZIF-8的非对称混合基质膜气体的透气性能和选择性都增加,且掺杂量为5% (w)时CO2/N2和CO2/CH4的理想选择性分别高达24和83,为合成高效的CO2分离膜提供了借鉴. Membranes with both good permeation and selectivity are highly desired for gas separations. We synthesized a polyimide (PI) asymmetric membrane using the phase-inversion method, and then modified the surface with a mixture of porous fillers and poly(amic acid) (PAA). The porous fillers included the metal organic framework (MOF) of Cu3(BTC)2 (copper benzene-1, 3, 5-tricarboxylate), the zeolite imidazole framework (ZIF) of ZIF-8, and the porous hydrotalcite of MgAl-LDH. A series of asymmetric mixed-matrix membranes (MMMs) were obtained after surface coating and thermal amidation. The MMM structure, CO2, CH4, and N2 permeance, and the ideal gas selectivity were investigated. With the surface modification, the morphology of the surface separation layers of the asymmetric PI/ZIF-8, PI/LDH, and PI/Cu3(BTC)2 MMMs significantly changed, and the gas separation performance changed accordingly. The PI/ZIF-8 asymmetric MMM with 5% (w) ZIF-8 doping exhibited both enhanced ideal gas selectivity and permeance; the CO2/N2 and CO2/CH4 selectivity were as high as 24 and 83, respectively. Thus, this surface modification provides improved MMM gas separation performance
References
[1]
15 Swaidan R. ; Ma X. ; Litwiller E. ; Pinnau I. J. Membr. Sci 2013, 447, 387. doi: 10.1016/j.memsci.2013.07.057
[2]
16 Ma Y. H. ; Zhao H. L. ; Tang S. J. ; Hu J. ; Liu H. L. Acta Phys. -Chim. Sin 2011, 27 (3), 689. doi: 10.3866/PKU.WHXB20110335
14 Robeson L. M. J. Membr. Sci 2008, 320 (1-2), 390. doi: 10.1016/j.memsci.2008.04.030
[17]
18 Ning X. ; Koros W. J. Carbon 2014, 66, 511. doi: 10.1016/j.carbon.2013.09.028
[18]
20 Xu H. ; Tong M. M. ; Wu D. ; Xiao G. ; Yang Q. Y. ; Liu D. H. ; Zhong C. L. Acta Phys. -Chim. Sin 2015, 31 (1), 41. doi: 10.3866/PKU.WHXB201411132
[19]
24 Lü L. ; Wu G. Q. ; Duan X. ; Li F. ; Du Y. B. Speciality Petrochemicals 2001, 6, 9.
[20]
吕亮; 吾国强; 段雪; 李峰; 杜以波. 精细石油化工, 2001, 6, 9.
[21]
25 Zhou S. Y. ; Zou X. Q. ; Sun F. X. ; Zhang F. ; Fan S. J. ; Zhao H. J. ; Schiestel T. ; Zhu G. S. J.Mater. Chem 2012, 22, 10322. doi: 10.1039/c2jm16371c
[22]
26 Cravillon J. ; Münzer S. ; Lohmeier S. J. ; Feldhoff A. ; Huber K. ; Wiebcke M. Chem. Mater 2009, 21, 1410. doi: 10.1021/cm900166h
[23]
27 Bux H. ; Liang F. Y. ; Li Y. S. ; Janosch C. ; Michael W. ; Juürgen C. J. Am. Chem. Soc 2009, 131, 16000. doi: 10.1021/ja907359t
[24]
29 Ahn J. ; Chung W. J. ; Ingo P. ; Michael D. G. J.Membr. Sci 2008, 314, 123. doi: 10.1016/j.memsci.2008.01.031
[25]
30 Sangil K. ; Liang C. ; Johnson J. K. ; Marand E. J.Membr. Sci 2007, 294, 147. doi: 10.1016/j.memsci.2007.02.028
[26]
31 Song Q. L. ; Nataraj S. K. ; Roussenova M. V. ; Tan J. C. ; Hughes D. J. ; Li W. ; Bourgoin P. ; Alam M. A. ; Cheetham A. K. ; Al-Muhtaseb S. A. ; Sivaniah E. Energy Environ. Sci 2012, 5 (8), 8359. doi: 10.1039/c2ee21996d
[27]
32 Adams R. T. ; Lee J. S. ; Bae T. H. ; Ward J. K. ; Johnson J. R. ; Jones C. W. ; Nair S. ; Koros W. J. J. Membr. Sci 2011, 367, 197. doi: 10.1016/j.memsci.2010.10.059
[28]
33 Husain S. ; Koros W. J. J.Membr. Sci 2007, 288, 195. doi: 10.1016/j.memsci.2006.11.016
[29]
34 Li Y. ; Chung T. S. ; Huang Z. ; Kulprathipanja S. J.Membr. Sci 2006, 277, 28. doi: 10.1016/j.memsci.2005.10.008
[30]
35 Tania R. ; Marion V. D. ; Elena G. P. ; Pablo S. C. ; Beatriz Z. ; Freek K. ; Jorge G. Adv. Funct. Mater 2014, 24, 249. doi: 10.1002/adfm.v24.2
[31]
36 Khan A. L. ; Klaysom C. ; Gahlaut A. ; Li X. ; Vankelecom I. F. J. J.Mater. Chem 2012, 22, 20057. doi: 10.1039/c2jm34885c
[32]
3 Hara N. ; Yoshimune M. ; Negishi H. ; Hara S. J. Membr. Sci 2014, 450, 215. doi: 10.1016/j.memsci.2013.09.012
[33]
4 Cao L. J. ; Tao K. ; Huang A. S. ; Kong C. L. ; Chen L. Chem. Commun 2013, 49 (76), 8513. doi: 10.1039/c3cc44530e
[34]
5 Nguyen P. T. ; Voss B. A. ; Wiesenauer E. F. ; Gin D. L. ; Noble R. D. Ind. Eng. Chem. Res 2012, 52 (26), 8812.
[35]
8 Venna S. R. ; Carreon M. A. J. Am. Chem. Soc 2009, 132 (1), 76.
[36]
12 Jie X. M. ; Duan C. J. ; Wang L. A. ; Jiang C. ; Zheng H. ; Liu J. H. ; Liu D. D. ; Cao Y. M. ; Yuan Q. Ind. Eng. Chem. Res 2014, 53 (11), 4442. doi: 10.1021/ie404198m
[37]
13 Robeson L. M. J.Membr. Sci 1991, 62 (2), 165. doi: 10.1016/0376-7388(91)80060-J
[38]
17 Defontaine G. ; Barichard A. ; Letaief S. ; Feng C. Y. ; Matsuura T. ; Detellier C. J. Colloid Interface Sci 2010, 343 (2), 622. doi: 10.1016/j.jcis.2009.11.048
[39]
19 Rahman M. M. ; Shishatskiy S. ; Abetz C. J. Membr. Sci 2014, 469, 344. doi: 10.1016/j.memsci.2014.06.048