采用循环伏安、方波伏安、计时电位和开路计时电位等电化学方法研究了Pr(Ⅲ)离子在LiCl-KCl-BiCl3熔体中W电极上的电化学行为。循环伏安和方波伏安的研究表明,Pr在预先沉积的Bi膜电极上发生欠电位沉积是由于生成了Pr-Bi金属间化合物,导致Pr(Ⅲ)在Bi膜电极上的还原电位比在W电极上还原电位更正。从开路计时电位曲线可以观察到两相共存的Pr-Bi金属间化合物的两个平台。利用开路计时电位计算了723-873 K温度范围内Pr在Pr-Bi合金中的活度和偏摩尔Gibbs自由能以及Pr-Bi金属间化合物的生成Gibbs自由能。通过恒电位电解,在液态Bi电极上得到了Pr-Bi合金,并采用X射线衍射(XRD)和扫描电子显微镜(SEM)附带能量散射谱(EDS)对样品进行了表征,结果表明所得到的Pr-Bi金属间化合物为PrBi2和PrBi。 The electrochemical behavior of Pr(Ⅲ) ions was studied on a Bi-coatedWelectrode in LiCl-KCl melts by a series of techniques, such as cyclic voltammetry, square wave voltammetry, and open circuit chronopotentiometry. From the cyclic voltammogram and square wave voltammogram, the underpotential deposition of Pr(Ⅲ) on pre-deposited Bi (i.e., a Bi-coated W electrode) occurs, owing to the formation of Pr-Bi intermetallic compounds, resulting in the electrochemical reduction of Pr(Ⅲ) at less cathodic potentials than that on an inert W electrode. Using the open circuit chronopotentiometry technique, two plateaus, corresponding to the co-existence of two phases of Pr-Bi intermetallic compound, were observed. Thermodynamic properties, such as the activities and relative partial molar Gibbs energies of Pr in the Pr-Bi alloys as well as Gibbs energies of the formation for the Pr-Bi intermetallic compounds, were estimated from the open circuit potential measurement in the temperature range of 723-873 K. Pr-Bi alloys were produced on the liquid Bi pool electrode by potentiostatic electrolysis, and were characterized by X-ray diffraction (XRD) and scanning electronic microscopy with energy-dispersive spectrometry (SEM-EDS). The results indicated that the intermetallic LiClcompounds, PrBi2 and PrBi, were obtained
References
[1]
2 Kinoshita K. ; Tadafumi K. ; Tadashi I. ; Ougier M. ; Glatz J. P. J.Phys. Chem. Solids 2005, 66, 619. doi: 10.1016/j.jpcs.2004.06.069
[2]
3 Soucek P. ; Cassayre L. ; Malmbeck R. ; Mendes E. ; Jardin R. ; Glatz J. P. Radiochim. Acta 2008, 96, 315. doi: 10.1524/ract.2008.1493
[3]
4 Shirai O. ; Iwai T. ; Shiozawa K. ; Suzuki Y. ; Sakamura Y. ; Inoue T. J.Nucl. Mater. 2000, 277, 226.
[4]
8 Iizuka M. ; Koyama T. ; Kondo N. ; Fujita R. ; Tanak H. J.Nucl. Mater. 1997, 247, 183.
[5]
11 Li M. ; Gu Q. Q. ; Han W. ; Yan Y. D. ; Zhang M. L. ; Sun Y. ; Shi W. Q. Electrochim. Acta 2015, 139, 146. doi: 10.1016/j.electacta.2015.03.145
[6]
12 Iida T. ; Nohira T. ; Ito Y. Electrochim. Acta 2003, 48, 1531. doi: 10.1016/S0013-4686(03)00031-8
[7]
13 Nohira T. ; Kambara H. ; Amezawa K. ; Ito Y. J.Electrochem. Soc. 2005, 152, 183. doi: 10.1149/1.1864281
[8]
14 Li M. ; Sun T. T. ; Sun Y. ; Han W. ; Zhang M. L. Acta Phys. -Chim. Sin. 2015, 31, 309. doi: 10.3866/PKU.WHXB201412182
15 Yang Y. S. ; Zhang M. L. ; Han W. ; Sun P. Y. ; Liu B. ; Jiang H. L. ; Jiang T. ; Peng S. M. ; Li M. ; Ye K. ; Yan Y. D. Electrochim. Acta 2014, 118, 150. doi: 10.1016/j.electacta.2013.11.145
[11]
16 Wang Y. C. ; Li M. ; Han W. ; Zhang M. L. ; Yang Y. S. ; Sun Y. ; Yan Y. D. J.Solid State Electrochem. 2015, 19, 3629. doi: 10.1007/s10008-015-2989-2
[12]
17 Kim S. H. ; Peak S. ; Kim T. J. ; Park D. Y. ; Ahn D. H. Electrochim. Acta 2012, 85, 332. doi: 10.1016/j.electacta.2012.08.084
[13]
20 Li M. ; Gu Q. Q. ; Han W. ; Zhang X. M. ; Yang S. ; Zhang M. L. ; Yan Y. D. RSC Adv. 2015, 5, 82471. doi: 10.1039/C5RA12723H
[14]
22 Nohira T. ; Kambara H. ; Amezawa K. ; Ito Y. J.Electrochem. Soc. 2005, 152, 183. doi: 10.1149/1.1864281
[15]
23 Konishi H. ; Nohira T. ; Ito Y. J. Electrochem. Soc. 2001, 148, C506. doi: 10.1149/1.1379031
[16]
24 Tong Y. X. ; Yang Q. Q. ; Liu G. K. ; Wang X. B. J. Rare Earth 1994, 18 (6), 433. doi: 10.13373/j.cnki.cjrm.1994.06.008
27 Tang H. ; Yan Y. D. ; Zhang M. L. ; Li X. ; Han W. ; Xue Y. ; Zhang Z. J. ; He H. Electrochim. Acta 2013, 107, 209. doi: 10.1016/j.electacta.2013.05.129
[20]
1 Gibilaro M. ; Massot L. ; Chamelot R. ; Taxil P. Electrochim. Acta 2009, 54, 5300. doi: 10.1016/j.electacta.2009.01.074
[21]
5 Cassayre L. ; Caravaca C. ; Jardin R. ; Malmbeck R. ; Masset P. ; Mendes E. ; Serp J. ; Soucek P. ; Glatz J. P. J.Nucl. Mater. 2008, 378, 79. doi: 10.1016/j.jnucmat.2008.05.004
[22]
6 Finne J. ; Picard G. ; Sanchez S. ; Walle E. ; Conocar O. ; Lacquement J. ; Boursier J. M. ; Noel D. J.Nucl. Mater. 2005, 344, 165. doi: 10.1016/j.jnucmat.2005.04.036
[23]
7 Serp J. ; Allibert M. ; Leterrier A. ; Malmbeck R. ; Ougier M. ; Rebizant J. ; Glatz J. P. J. Electrochem. Soc. 2005, 152, C167. doi: 10.1149/1.1859812
[24]
9 Castrillejo Y. ; Vega A. ; Vega M. ; Hernández P. ; Rodriguez J. A. ; Barrado E. Electrochim. Acta 2014, 118, 58. doi: 10.1016/j.electacta.2013.11.163
[25]
10 Bermejo M. R. ; Barrado E. ; Martínez A. M. ; Castrillejo Y. J.Electroanal. Chem. 2008, 617, 85. doi: 10.1016/j.jelechem.2008.01.017
[26]
18 Castrillejo Y. ; Bermejo M. R. ; Diaz Arocas P. ; Rosa F. ; Barrado E. Electrochemistry 2005, 73, 636.
[27]
19 Castrillejo Y. ; Bermejo M. R. ; Arocas P. D. ; Martínez A. M. ; Barrado E. J.Electroanal. Chem. 2005, 579, 343. doi: 10.1016/j.jelechem.2005.03.001
[28]
21 Castrillejo Y. ; Bermejo M. R. ; Arocas P. D. ; Martínez A. M. ; Barrado E. J.Electroanal. Chem. 2005, 575, 61. doi: 10.1016/j.jelechem.2004.08.020
[29]
25 Yang Q. Q. ; Liu G. K. ; Tong Y. X. ; Liang G. C. Acta Metall. Sin. 1992, 28 (3), 111.
[30]
杨绮琴; 刘冠昆; 童叶翔; 梁广超. 金属学报, 1992, 28 (3), 111.
[31]
26 Li M. ; Li W. ; Han W. ; Zhang M. L. ; Yan Y. D. Chem. J. Chin. Univ. 2014, 35, 2662. doi: 10.7503/cjcu20140405
[32]
28 Massalski T. B. ; Okamoto H. ; Subramanian P. R. ; Kacprzak L. Binary Alloy Phase Diagrams 2nd ed ASM International: Materials Park, OH, 1990, 776- 777.