全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 


DOI: 10.3866/PKU.WHXB201706151

Full-Text   Cite this paper   Add to My Lib

Abstract:

钼硫化物被认为是一种高效的电催化析氢反应的催化剂,因此其合成方法受到了广泛的研究和关注。本文以四硫代钼酸铵和氧化石墨为前驱体,利用γ射线对其辐照还原,一步法制备了钼硫化物/还原氧化石墨烯(MoSx/RGO)复合材料。通过X射线光电子能谱、X射线衍射、透射电子显微镜、Raman光谱等表征手段确认复合材料中的MoSx为无定型结构,且氧化石墨烯得到了有效的还原。同时系统研究了吸收剂量、前驱体配比对复合材料作为析氢反应催化剂性能的影响。结果发现,MoSx/RGO复合材料具有优异的催化性能,其催化起始电压为110 mV,在电流密度为10 mA·cm-2时过电势仅为160 mV,Tafel斜率为46 mV·dec-1,说明该催化剂催化析氢机理为Volmer-Heyrovesy机理。此外,MoSx/RGO复合材料还具有良好的催化稳定性。
Molybdenum sulfide is an efficient catalyst for the hydrogen evolution reaction (HER) and its synthesis has attracted significant attention in recent years. In this work, molybdenum sulfide/reduced graphite oxide (MoSx/RGO) was prepared by the γ-ray induced reduction of ammonium tetrathiomolybdate and graphite oxide. The composition, morphology, and structure of the MoSx/RGO composites were determined by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The results confirmed the formation of amorphous MoSx/RGO composites. Subsequently, the effects of the absorbed dose and precursor ratio on the performance of the composite material as the catalyst for HER were studied systematically. The resultant MoSx/RGO composites were found to show excellent catalytic activity towards HER. With a catalyst loading of 0.275 mg·cm-2, an onset overpotential of 110 mV, a Tafel slope of 46 mV·dec-1, and a current density of 10 mA·cm-2 at the overpotential of 160 mV can be achieved. These results can be considered as the proof of Volmer-Heyrovesy mechanism. In addition, the MoSx/RGO catalyst also showed an excellent long-time stability during the evaluation for HER

References

[1]  15 Ting L. R. L. ; Deng Y. ; Ma L. ; Zhang Y. J. ; Peterson A. A. ; Yeo B. S. ACS Catal 2016, 6 (2), 861. doi: 10.1021/acscatal.5b02369
[2]  19 Stankovich S. ; Dikin D. A. ; Dommett G. H. B. ; Kohlhaas K. M. ; Zimney E. J. ; Stach E. A. ; Piner R. D. ; Nguyen S. T. ; Ruoff R. S. Nature 2006, 442 (7100), 282. doi: 10.1038/nature04969
[3]  22 Yin Y. ; Xu X. ; Zhang Z. Chem. Commun 1998, (16), 1641. doi: 10.1039/A802910E
[4]  5 Morales-Guio C. G. ; Hu X. Acc. Chem. Res 2014, 47 (8), 2671. doi: 10.1021/ar5002022
[5]  8 Zeng Z. ; Sun T. ; Zhu J. ; Huang X. ; Yin Z. ; Lu G. ; Fan Z. ; Yan Q. ; Hng H. H. ; Zhang H. Angew. Chem. Int. Ed 2012, 51 (36), 9052. doi: 10.1002/anie.201204208
[6]  14 Shi Y. ; Wang J. ; Wang C. ; Zhai T. T. ; Bao W. J. ; Xu J. J. ; Xia X. H. ; Chen H. Y. J.Am. Chem. Soc 2015, 137 (23), 7365. doi: 10.1021/jacs.5b01732
[7]  16 Liao L. ; Zhu J. ; Bian X. ; Zhu L. ; Scanlon M. D. ; Girault H. H. ; Liu B. Adv. Funct. Mater 2013, 23 (42), 5326. doi: 10.1002/adfm.201300318
[8]  17 Youn D. H. ; Han S. ; Kim J. Y. ; Kim J. Y. ; Park H. ; Choi S. H. ; Lee J. S. ACS Nano 2014, 8 (5), 5164. doi: 10.1021/nn5012144
[9]  18 Zhu H. ; Du M. ; Zhang M. ; Zou M. ; Yang T. ; Wang S. ; Yao J. ; Guo B. Chem. Commun 2014, 50 (97), 15435. doi: 10.1039/C4CC06480A
[10]  23 Abedini A. ; Larki F. ; Saion E. B. ; Zakaria A. ; Hussein M. Z. J.Radioanal. Nucl. Chem 2012, 292 (1), 361. doi: 10.1007/s10967-011-1611-z
[11]  26 Vrubel H. ; Hu X. ; Vrubel H. ; Hu X. ACS Catal 2013, 3 (9), 2002. doi: 10.1021/cs400441u
[12]  27 Benck J. D. ; Chen Z. ; Kuritzky L. Y. ; Forman A. J. ; Jaramillo T. F. ACS Catal 2012, 2 (9), 1916. doi: 10.1021/cs300451q
[13]  1 Chang J. F. ; Xiao Y. ; Luo Z. Y. ; Ge J. J. ; Liu C. P. ; Wei X. Acta Phys. -Chim. Sin 2016, 32 (7), 37. doi: 10.3866/PKU.WHXB201604291
[14]  常进法; 肖瑶; 罗兆艳; 葛君杰; 刘长鹏; 邢巍. 物理化学学报, 2016, 32 (7), 1556. doi: 10.3866/PKU.WHXB201604291
[15]  2 Ding Q. ; Song B. ; Xu P. ; Jin S. Chem 2016, 1 (5), 699. doi: 10.1016/j.chempr.2016.10.007
[16]  3 Cao X. ; Tan C. ; Zhang X. ; Zhao W. ; Zhang H. Adv. Mater 2016, 28 (29), 6167. doi: 10.1002/adma.201504833
[17]  4 Lukowski M. A. ; Daniel A. S. ; Meng F. ; Forticaux A. ; Li L. ; Jin S. J.Am. Chem. Soc 2013, 135 (28), 10274. doi: 10.1021/ja404523s
[18]  6 Mak K. F. ; He K. L. ; Lee C. ; Lee G. H. ; Hone J. ; Heinz T. F. ; Shan J. Nat. Mater 2013, 12 (3), 207. doi: 10.1038/nmat3505
[19]  20 Zheng X. ; Xu J. ; Yan K. ; Wang H. ; Wang Z. ; Yang S. Chem. Mater 2014, 26 (7), 2344. doi: 10.1021/cm500347r
[20]  21 Fu X. ; Zhang Y. ; Cao P. ; Ma H. ; Liu P. ; He L. ; Peng J. ; Li J. ; Zhai M. Radiat. Phys. Chem 2016, 123, 79. doi: 10.1016/j.radphyschem.2016.02.016
[21]  28 Gu H. ; Yang Y. ; Tian J. X. ; Shi G. Y. ACS Appl. Mater. Inter 2013, 5 (14), 6762. doi: 10.1021/am401738k
[22]  7 Eda G. ; Yamaguchi H. ; Voiry D. ; Fujita T. ; Chen M. W. ; Chhowalla M. Nano Lett 2011, 11 (12), 5111. doi: 10.1021/nl201874w
[23]  9 Zhan Y. ; Liu Z. ; Najmaei S. ; Ajayan P. M. ; Lou J. Small 2012, 8 (7), 966. doi: 10.1002/smll.201102654
[24]  10 Merki D. ; Fierro S. ; Vrubel H. ; Hu X. Chem. Sci 2011, 2 (7), 1262. doi: 10.1039/C1SC00117E
[25]  11 Li Y. ; Wang H. ; Xie L. ; Liang Y. ; Hong G. ; Dai H. J.Am. Chem. Soc 2011, 133 (19), 7296. doi: 10.1021/ja201269b
[26]  12 Yang J. ; Shin H. S. J.Mater. Chem. A 2014, 2 (17), 5979. doi: 10.1039/C3TA14151A
[27]  13 Kibsgaard J. ; Chen Z. ; Reinecke B. N. ; Jaramillo T. F. Nat. Mater 2012, 11 (11), 963. doi: 10.1038/nmat3439
[28]  24 Chu G. ; Bian G. ; Fu Y. ; Zhang Z. Mater. Lett 2000, 43 (3), 81. doi: 10.1016/S0167-577X(99)00235-9
[29]  25 Cao P. ; Peng J. ; Li J. ; Zhai M. J. Power Sources 2017, 347, 210. doi: 10.1016/j.jpowsour.2017.02.056

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133