全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 


DOI: 10.3866/PKU.WHXB201612293

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过传统的方法,制备了两种对水和空气稳定的四烷基膦类离子液体.离子液体是:己基三丁基膦四氟化硼和己基三丁基膦双三氟甲基磺酸亚胺.在T=283.15-353.15 K温度范围内,测定了两个离子液体的密度、动力粘度及电导率.讨论了温度、阴离子结构对离子液体的性质的影响.结合文献报道的其它离子液体,讨论了该类离子液体性质随阳离子结构的变化规律,并与咪唑类离子液体的性质进行了比较.通过经验方程,利用密度数据计算了两个离子液体的重要热力学性质参数,例如:分子体积、标准摩尔熵及晶格能等.并将估算性质与传统的咪唑、吡啶类离子液体进行了对比.通过密度和电导率确定了离子液体的摩尔电导率.讨论了Vogel-Fulcher-Tamman (VFT)方程和Arrhenius方程对于粘度和电导率拟合的可行性,并估算了电导活化能及流动活化能.通过Walden规则,描述了密度、粘度及电导率之间的联系.有关研究对新型离子液体的合成及其工业化的应用具有十分重要意义.
Two air and water stable hydrophobic phosphonium ionic liquids (ILs), tributyl-hexylphosphonium tetrafluoroborate ([P4446][BF4]) and tributyl-hexylphosphonium bis (trifluoromethylsulfonyl) imide ([P4446][NTf2]), were prepared by the traditional method. Their basic physico-chemical properties of density, dynamic viscosity, and electrical conductivity were measured in the temperature range of 283.15-353.15 K. The effect of the temperature and structure of the anion on the thermodynamic properties were discussed. The properties are compared with the cation structures changing of the phosphonium type ILs. The most important thermodynamic properties for their practical application, such as molecular volume, standard molar entropy, and lattice energy, were calculated from their density using empirical equations. The calculated values were compared with those of imdazolium and pyridinium type ILs. Molar electrical conductivity was determined from density and electrical conductivity. The applicability of the Vogel-Fulcher-Tamman (VFT) and Arrhenius equations to the fitting of the dynamic viscosity and electrical conductivity was validated. The activation of the electrical conductivity and dynamic viscosity were obtained from the final VFT equation. According to the Walden rule, the density, dynamic viscosity, and electrical conductivity were described by the Walden equation. The results are very important for academic studies as well as industrial applications of these ILs

References

[1]  6 Tsunashima K. ; Sugiya M. Electrochemistry 2007, 75, 734. doi: 10.5796/electrochemistry.75.734
[2]  7 Vega J. A. ; Zhou J. ; Kohl P. A. J. Electrochem. Soc 2009, 156, A253. doi: 10.1149/1.3070657
[3]  8 Pomaville R. M. ; Poole S. K. ; Davis L. J. ; Poole C. F. J. Chramatogr 1988, 438, 1. doi: 10.1016/S0021-9673(00)90227-9
[4]  9 Breitbach Z. S. ; Armstrong D. W. Anal. Bioanal. chem 2008, 390, 1605. doi: 10.1007/s00216-008-1877-3
[5]  10 Fukumoto K. ; Ohno H. Angew. Chem. Int. Ed 2007, 46, 1852. doi: 10.1002/anie.200604402
[6]  22 Baldo M. A. ; Oliveri P. ; Simonetti R. ; Daniele S. J. Electroanal. Chem 2014, 731, 43. doi: 10.1016/j.jelechem.2014.08.001
[7]  23 Li A. ; Tian Z. ; Yan T. ; Jiang D. ; Dai S. J. Phys. Chem. B 2014, 118, 14880. doi: 10.1021/jp5100236
[8]  24 Tong J. ; Zhang Q. G. ; Hong M. ; Yang J. Z. Acta Phys.-Chim. Sin 2006, 22, 71. doi: 10.3866/PKU.WHXB20060114
[9]  25 Tong J. ; Chen T. F. ; Zhang D. ; Wang L. F. ; Tong J. ; Yang J. Z. Acta Phys.-Chim. Sin 2016, 32, 1161. doi: 10.3866/PKU.WHXB201602232
[10]  26 Bu X. X. ; Fan B. H. ; Wei J. ; Xing N. N. ; Ma X. X. ; Guan W. Acta Phys.-Chim. Sin 2016, 32, 267. doi: 10.3866/PKU.WHXB201510303
[11]  34 Jacquemin J. ; Husson P. ; Padua A. A. H. ; Majer V. Green Chem 2006, 8, 172. doi: 10.1039/B513231B
[12]  35 Lide, D. R. Handbook of Chemistry and Physics, 82nd ed. ; CRCPress: Boca Raton, FL, 2001-2002.
[13]  40 Liu Q. S. ; Yang M. ; Yan P. F. ; Liu X. M. ; Tan Z. C. ; Welz-Biermann U. J. Chem. Eng. Data 2010, 55, 4928. doi: 10.1021/je100507n
[14]  41 Fang D.W. ; Tong J. ; Guan W. ; Wang H. ; Yang J. Z. J. Phys. Chem. B 2010, 114, 13808. doi: 10.1021/jp107452q
[15]  43 Tong J. ; Song B. ; Wang C. X. ; Li L. ; Guan W. ; Fang D.W. ; Yang J. Z. Ind. Eng. Chem. Res 2011, 50, 2418. doi: 10.1021/ie101903t
[16]  44 Xu W. G. ; Ma X. X. ; Li L. ; Tong J. ; Guan W. Ind. Eng. Chem. Res 2012, 51, 4105. doi: 10.1021/ie201530b
[17]  47 Yoshizawa M. ; Xu W. ; Angell C. A. J. Am. Chem. Soc 2003, 125, 15411. doi: 10.1021/ja035783d
[18]  48 Angell C. A. ; Byrne N. ; Belieres J. P. Acc. Chem. Res 2007, 40, 1228. doi: 10.1021/ar7001842
[19]  49 Xu W. ; Cooper E. I. ; Angell C. A. J. Phys. Chem. B 2003, 107, 6170. doi: 10.1021/jp0275894
[20]  50 MacFarlane D. R. ; Forsyth M. ; Izgorodina E. I. ; Abbott A. P. ; Annat G. ; Fraser K. Phys. Chem. Chem. Phys 2009, 11, 4962. doi: 10.1039/B900201D
[21]  51 Belieres J. P. ; Angell C. A. J. Phys. Chem. B 2007, 111, 4926. doi: 10.1021/jp067589u
[22]  52 Cheng Z. ; Lee J. M. J. Phys. Chem. B 2014, 118, 2712. doi: 10.1021/jp411904w
[23]  19 Tariq M. ; Forte P. A. S. ; Gomes M. F. C. ; Lopes J. N. C. ; Rebelo L. P. N. J. Chem. Thermodynamics 2009, 41, 790. doi: 10.1016/j.jct.2009.01.012
[24]  21 Goodrich B. F. ; Fuente J. C. de la ; Gurkan B. E. ; Lopez Z. K. ; Price E. A. ; Huang Y. ; Brennecke J. F. J. Phys. Chem. B 2011, 115, 9140. doi: 10.1021/jp2015534
[25]  卜晓雪; 樊本汉; 魏杰; 邢楠楠; 马晓雪; 关伟. 物理化学学报, 2016, 32, 267. doi: 10.3866/PKU.WHXB201510303
[26]  28 Ferreira C. E. ; Talavera-Pieto N. M. C. ; Fonseca I. M. A. ; Portugal A. T. G. ; Ferreira A. G. M. J. Chem. Thermodynamics 2012, 47, 183. doi: 10.1016/j.jct.2011.10.012
[27]  29 Hayyan M. ; Mjalli F. S. ; Hashim M. A. ; AlNashef I. M. ; Tan X. M. ; Chooi K. L. J. Appl. Sci 2010, 10, 1176. doi: 10.3923/jas.2010.1176.1180
[28]  36 Liu Q. S. ; Li P. P. ; Welz-Biermann U. ; Chen J. ; Liu X. X. J. Chem. Thermodynamics 2013, 66, 88. doi: 10.1016/j.jct.2013.06.008
[29]  刘青山; 颜佩芳; 杨淼; 谭志诚; 李长平; Welz-BiermannUrs.. 物理化学学报, 2011, 27, 276. doi: 10.3866/PKU.WHXB20112762
[30]  1 Rantwijk F. V. ; Sheldon R. A. Chem. Rev 2007, 107, 2757. doi: 10.1021/cr050946x
[31]  2 Greaves T. L. ; Drummond C. J. Chem. Rev 2008, 108, 206. doi: 10.1021/cr068040u
[32]  3 Hapiot P. ; Lagrost C. Chem. Rev 2008, 108, 2238. doi: 10.1021/cr0680686
[33]  4 Jessop P. G. ; Subramaniam B. Chem. Rev 2007, 107, 2666. doi: 10.1021/cr040199o
[34]  13 Kohno Y. ; Arai H. ; Ohno H. Chem. Commun 2011, 47, 4772. doi: 10.1039/C1CC10613A
[35]  14 Wang C. ; Luo X. ; Luo H. ; Jiang D. ; Li H. ; Dai S. Angew. Chem. Int. Ed 2011, 50, 4918. doi: 10.1002/anie.201008151
[36]  15 Wang C. ; Cui G. ; Luo X. ; Xu Y. ; Li H. ; Dai S. J. Am. Chem. Soc 2011, 133, 11916. doi: 10.1021/ja204808h
[37]  16 Blundell R. K. ; Licence P. Phys. Chem. Chem. Phys 2014, 16, 15278. doi: 10.1039/C4CP01901F
[38]  17 Chen F. F. ; Dong Y. ; Sang X. Y. ; Zhou Y. ; Tao D. J. Acta Phys.-Chim. Sin 2016, 32, 605. doi: 10.3866/PKU.WHXB201512241
[39]  陈凤凤; 董艳; 桑晓燕; 周言; 陶端健. 物理化学学报, 2016, 32, 605. doi: 10.3866/PKU.WHXB201512241
[40]  18 Ferreira A. F. ; Sim?es P. N. ; Ferreira A. G. M. J. Chem. Thermodynamics 2012, 45, 16. doi: 10.1016/j.jct.2011.08.019
[41]  佟静; 张庆国; 洪梅; 杨家振. 物理化学学报, 2006, 22, 71. doi: 10.3866/PKU.WHXB20060114
[42]  佟静; 陈滕飞; 张朵; 王林富; 佟健; 杨家振. 物理化学学报, 2016, 32, 1161. doi: 10.3866/PKU.WHXB201602232
[43]  32 Glasser L. Thermochim. Acta 2004, 421, 87. doi: 10.1021/je200830j
[44]  33 McEwen A. B. ; Ngo H. L. ; LeCompte K. ; Goldman J. L. J. Electrochem. Soc 1999, 146, 1687. doi: 10.1149/1.1391827
[45]  37 Cheng Z. ; Lee J. M. J. Phys. Chem. B 2014, 118, 2712. doi: 10.1021/jp411904w
[46]  38 Zhang Q. G. ; Wei Y. ; Sun S. S. ; Wang C. ; Yang M. ; Liu Q.S. ; Gao Y. A. J. Chem. Eng. Data 2012, 57, 2185. doi: 10.1021/je300153f
[47]  45 Liu Q. S. ; Tong J. ; Tan Z. C. ; Welz-Biermann U. ; Yang J. Z. J. Chem. Eng. Data 2010, 55, 2586. doi: 10.1021/je901035d
[48]  46 Vila J. ; Ginés P. ; Pico J. M. ; Franjo C. ; Jiménez E. ; Varela L.M. ; Cabeza O. Fluid Phase Equilibria 2006, 242, 141. doi: 10.1016/j.uid.2006.01.022
[49]  53 Liu Q. S. ; Yan P. F. ; Yang M. ; Tan Z. C. ; Li C. P. ; Welz-Biermann U. Acta Phys.-Chim. Sin 2011, 27, 2762. doi: 10.3866/PKU.WHXB20112762
[50]  5 Tsunashima K. ; Sugiya M. Electrochem. Commun 2007, 9, 2353. doi: 10.1016/j.elecom.2007.07.003
[51]  11 Kohno Y. ; Deguchi Y. ; Ohno H. Chem. Commun 2012, 48, 11883. doi: 10.1039/c2cc36913c
[52]  12 Kohno Y. ; Arai H. ; Saita S. ; Ohno H. Aust. J. Chem 2011, 64, 1560. doi: 10.1071/CH11278
[53]  20 Diogo J. C. F. ; Caetano F. J. P. ; Fareleira J. M. N. A. ; Wakeham W. A. J. Chem. Eng. Data 2012, 57, 1015. doi: 10.1021/je200830j
[54]  27 Hoogerstraete T. V. ; Binnemans K. Green Chem 2014, 16, 1594. doi: 10.1039/C3GC41577E
[55]  30 Tong B. ; Liu Q. S. ; Tan Z. C. ; Welz-Biermann U. J. Phys. Chem. A 2010, 114, 3782. doi: 10.1021/jp9047538
[56]  31 Liu Q. S. ; Yang M. ; Li P. P. ; Sun S. S. ; Welz-Biermann U. ; Tan Z. C. ; Zhang Q. G. J. Chem. Eng. Data 2011, 56, 4094. doi: 10.1021/je200534b
[57]  39 Liu Q. S. ; Li P. P. ; Welz-Biermann U. ; Liu X. X. ; Chen J. J. Chem. Eng. Data 2012, 57, 2999. doi: 10.1021/je3004645
[58]  42 Fang D.W. ; Guan W. ; Tong J. ; Wang Z.W. ; Yang J. Z. J. Phys. Chem. B 2008, 112, 7499. doi: 10.1021/jp801269u

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133